
Looking Back on the Language and Hardware Revolutions:
Measured Power, Performance, and Scaling ∗

Hadi Esmaeilzadeh† Ting Cao‡ Xi Yang‡ Stephen M. Blackburn‡ Kathryn S. McKinley§

†University of Washington ‡Australian National University §The University of Texas at Austin
hadianeh@cs.washington.edu {Ting.Cao,Xi.Yang,Steve.Blackburn}@anu.edu.au mckinley@cs.utexas.edu

Abstract
This paper reports and analyzes measured chip power and perfor-
mance on five process technology generations executing 61 diverse
benchmarks with a rigorous methodology. We measure representa-
tive Intel IA32 processors with technologies ranging from 130nm
to 32nm while they execute sequential and parallel benchmarks
written in native and managed languages. During this period, hard-
ware and software changed substantially: (1) hardware vendors de-
livered chip multiprocessors instead of uniprocessors, and indepen-
dently (2) software developers increasingly chose managed lan-
guages instead of native languages. This quantitative data reveals
the extent of some known and previously unobserved hardware and
software trends. Two themes emerge.

(I) Workload: The power, performance, and energy trends of
native workloads do not approximate managed workloads. For ex-
ample, (a) the SPEC CPU2006 native benchmarks on the i7 (45) and
i5 (32) draw significantly less power than managed or scalable native
benchmarks; and (b) managed runtimes exploit parallelism even
when running single-threaded applications. The results recommend
architects always include native and managed workloads when de-
signing and evaluating energy efficient hardware.

(II) Architecture: Clock scaling, microarchitecture, simultane-
ous multithreading, and chip multiprocessors each elicit a huge va-
riety of power, performance, and energy responses. This variety
and the difficulty of obtaining power measurements recommends
exposing on-chip power meters and when possible structure spe-
cific power meters for cores, caches, and other structures. Just as
hardware event counters provide a quantitative grounding for per-
formance innovations, power meters are necessary for optimizing
energy.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Native & Managed Languages; Performance; Power
General Terms Experimentation, Languages, Performance, Power,
Measurement
∗ This work is supported by ARC DP0666059 and NSF CSR-0917191. Any opinions,
findings and conclusions expressed herein are the authors’ and do not necessarily
reflect those of the sponsors.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Quantitative performance analysis serves as a foundation for com-
puter system design and innovation. In their now classic paper [9,
10], Emer and Clark noted that “A lack of detailed timing infor-
mation impairs efforts to improve performance.” They pioneered
the quantitative approach by characterizing the instruction mix and
cycles per instruction on real timesharing workloads. In fact, they
surprised their reviewers by demonstrating the VAX-11/780 was a
.5 MIPS machine, not a 1 MIPS machine! Using this data, their
team, academics, and other industrial architects subsequently used
a more principled approach to improving performance, or in other
words [10]: “Boy, you ruin all our fun—you have data.” This paper
extends the quantitative approach to measured power on modern
workloads. This work is timely because the past decade heralded
the era of power and energy (power × execution time) constrained
computer architecture design. A lack of detailed power measure-
ments is impairing efforts to reduce energy consumption on real
modern workloads.

From 2003 to 2010, technology shrank from 130nm to 32nm,
following Moore’s law. However, physical on-chip power limits
and design complexity forced architects to stop using clock scal-
ing as the primary means of improving performance. In this pe-
riod, Dennard scaling slowed significantly [6]; reductions in pro-
cess technology are no longer yielding both power and performance
gains at historical rates; and wire delay hit its physical limit. For
example, single-cycle cross-chip access times are not possible with
typical chip areas. Because of technology constraints, computing
entered the Chip MultiProcessor (CMP) era, in which architects
are delivering more processors on each chip. On a broader scale,
explosive demand for power and energy efficient large-scale com-
puting [13] and mobile devices continues unabated. Consequently,
power is a first-order design constraint in all market segments.

A commensurate explosion of software applications make these
devices useful. Demands such as complexity management, relia-
bility, correctness, security, mobility, portability, and ubiquity have
pushed developers in many market segments away from native
compiled ahead-of-time programming languages. Developers are
increasingly choosing managed programming languages, which
provide safe pointer disciplines, garbage collection (automatic
memory management), extensive standard libraries, and portability
through dynamic just-in-time compilation. For example, web ser-
vices are increasingly using PHP on the server side and JavaScript
on the client side. Java and its virtual machine are now mature
technologies and are the dominant choice in markets as diverse
as financial software and cell phone applications. This software
trend, which is independent of the CMP hardware trend, motivates
including managed workloads in architecture analysis.

This paper examines power, performance, and scaling in this
period of software and hardware changes. We use eight representa-

1 2011/2/2



tive Intel IA32 processors from five technology generations intro-
duced in 2003 through 2010 that range from 130nm to 32nm. These
processors have an isolated processor power supply on the mother-
board with a stable voltage. We use a Hall effect sensor to measure
the power supply current, and hence processor power. We calibrate
and validate our sensor data. We find that actual power measure-
ments vary widely with benchmarks. Furthermore, relative perfor-
mance, power, and energy are not well predicted by core count,
clock speed, or reported Thermal Design Power (TDP), i.e., the
nominal amount of power the chip is designed to dissipate without
exceeding the maximum junction temperature.

We execute 61 diverse sequential and parallel benchmarks writ-
ten in native C, C++, and Fortran languages and in the managed
Java language. We draw these benchmarks from SPEC CINT2006,
SPEC CFP2006, PARSEC, SPECjvm, DaCapo 06-10-MR2, DaCapo 9.12,
and pjbb2005. We use Java as our representative of managed lan-
guages because it is the most widely used managed language [33],
has publicly available real-world sophisticated benchmarks, and
has mature Virtual Machine (VM) technology. We classify the
benchmarks into four groups and weight the groups equally: na-
tive non-scalable benchmarks (Native Non-scalable), native scalable
benchmarks (Native Scalable), Java non-scalable benchmarks (Java
Non-scalable), and Java scalable benchmarks (Java Scalable).

We explore the energy impact of a variety of hardware features
using hardware configuration to perform controlled experiments.
We explore the effects of simultaneous multithreading (SMT), core
count (CMP), clock frequency, die shrink, gross microarchitectural
changes, Turbo Boost,1 software parallelism, and workload. We
perform a historical analysis and a Pareto energy efficiency anal-
ysis, which identifies the most power and performance efficient
designs in this architecture configuration space of real processors.
We make all our data publicly available to encourage others to use
it and perform further analysis. The individual benchmark results,
experiments, and analysis described in this paper are in the ACM
Digital Library in csv and excel formats as a companion to this
paper [12]. To the best of our knowledge, this study is the first sys-
tematic exploration of power and performance across technology
generations using measured processor power, controlled configura-
tion, and diverse workloads.

This quantitative data reveals the extent, with precision and
depth, of some known workload and hardware trends and some pre-
viously unobserved trends. We call out four workload and nine ar-
chitecture findings from our data and analysis. Two themes emerge.
Workload Findings The power, performance, and energy trends
of native workloads do not approximate managed workloads well.
For example, (a) the SPEC CPU2006 native benchmarks executing
on the i7 (45) and i5 (32) are outliers with respect to power because
they draw significantly less power than managed or scalable na-
tive benchmarks; (b) the addition of SMT slows down non-scalable
Java on the Pentium 4 (130), and (c) managed runtimes exploit par-
allelism, even when managed applications do not. For example,
single-threaded Java workloads run on average about 10% faster
and up to 60% faster on two cores when compared to one core.
This result is not due to better code from more aggressive just-in-
time compilation on unutilized cores. This speedup comes directly
from parallelism in the VM and reductions in VM and application
interference when the VM performs its computation and data ac-
cesses elsewhere. Native single-threaded workloads never experi-
ence performance or energy improvements from CMPs or SMT,
and sometimes consume a small amount of additional power on
CMPs. While measuring and simulating managed workloads does

1 Intel Turbo Boost technology automatically increases frequency beyond
the default frequency when the chip is operating below power, current, and
temperature thresholds [19].

require additional methodologies, prior work resolves them (see
Sections 2 and 5). These results recommend that architects always
include native and managed workloads when designing and evalu-
ating energy efficient designs.
Architectural Findings A huge variety of processor power, per-
formance, and energy responses due to features such as clock scal-
ing, microarchitecture, Turbo Boost, SMT, and CMP reveal a com-
plex and poorly understood energy efficiency design space. Con-
sider these three sample findings. (a) Halving the clock rate of the
i5 (32) increases its energy consumption around 4%, whereas it de-
creases the energy consumption of the i7 (45) and Core 2D (45) by
around 60%, i.e., running the i5 (32) at its peak clock rate is as
energy efficient as running it as its lowest, whereas running the
i7 (45) and Core 2D (45) at their lowest clock rate is substantially
more energy efficient than their peak. (b) Two pairs of our pro-
cessors observe the effect of a die-shrink. On the Core and Ne-
halem families, the die shrink is remarkably effective at reduc-
ing energy consumption, even when controlling for clock speed.
(c) We disable and enable SMT and find that on more modern pro-
cessors it is a remarkably energy efficient mechanism for exploit-
ing software parallelism. Although it was originally designed for
wide-issue out-of-order processors, SMT provides the most energy
benefits for the dual-issue in-order Atom (45). Modern processors
include power management techniques that monitor power sen-
sors to minimize power usage and boost performance, for exam-
ple. However, these sensors are not currently exposed. The wide
variety of performance and power responses to workload and ar-
chitectural features, and the difficulty of obtaining power measure-
ments recommends exposing on-chip power meters and when pos-
sible, structure-specific power meters for cores, caches, and other
structures. Coupling these measurements with hardware event per-
formance counters will provide a quantitative basis for optimizing
power and energy for future system design.
Measurement is key to understanding and optimization.

2. Methodology
This section describes our benchmarks, compilers, Java Virtual Ma-
chines, operating system, hardware, power measurement method-
ologies, and performance measurement methodologies.

2.1 Benchmarks
The following methodological choices in part prescribe our choice
of benchmarks. (1) Individual benchmark performance and aver-
age power: We measure execution time and average power of in-
dividual benchmarks in isolation and aggregate them by workload
type. While multi-programmed workload measurements, such as
SPECrate can be valuable, the methodological and analysis chal-
lenges they raise are beyond the scope of this paper. (2) Lan-
guage and parallelism: We systematically explore native / man-
aged, and scalable / non-scalable workloads. We create four bench-
mark groups in the cross product and weight each group equally.

Native Non-scalable: C, C++ and Fortran single-threaded bench-
marks from SPEC CPU2006.

Native Scalable: Multithreaded C and C++ benchmarks from PAR-
SEC.

Java Non-scalable: Single and multithreaded benchmarks that do
not scale well from SPECjvm, DaCapo 06-10-MR2, DaCapo 9.12,
and pjbb2005.

Java Scalable: Multithreaded benchmarks from DaCapo 9.12, se-
lected because their performance scales similarly to Native Scal-
able on the i7 (45).

Native and managed applications embody different tradeoffs be-
tween performance, reliability, portability, and deployment. In this

2 2011/2/2



Grp Src Name Time Description

N
at

iv
e

N
on

-s
ca

la
bl

e

SI

perlbench 1037 Perl programming language
bzip2 1563 bzip2 Compression
gcc 851 C optimizing compiler
mcf 894 Combinatorial opt/singledepot vehicle scheduling
gobmk 1113 AI: Go game
hmmer 1024 Search a gene sequence database
sjeng 1315 AI: tree search & pattern recognition
libquantum 629 Physics / Quantum Computing
h264ref 1533 H.264/AVC video compression
omnetpp 905 Ethernet network simulation based on OMNeT++
astar 1154 Portable 2D path-finding library
xalancbmk 787 XSLT processor for transforming XML

SF

gamess 3505 Quantum chemical computations
milc 640 Physics/quantum chromodynamics (QCD)
zeusmp 1541 Physics/Magnetohydrodynamics based on ZEUS-MP
gromacs 983 Molecular dynamics simulation
cactusADM 1994 Cactus and BenchADM physics/relativity kernels
leslie3d 1512 Linear-Eddy Model in 3D computational fluid dynamics
namd 1225 Parallel simulation of large biomolecular systems
dealII 832 PDEs with adaptive finite element method
soplex 1024 Simplex linear program solver
povray 636 Ray-tracer
calculix 1130 Finite element code for linear and nonlinear 3D struc-

tural applications
GemsFDTD 1648 Solves the Maxwell equations in 3D in the time domain
tonto 1439 Quantum crystallography
lbm 1298 Lattice Boltzmann Method for incompressible fluids
sphinx3 2007 Speech recognition

N
at

iv
e

S
ca

la
bl

e

PA

blackscholes 482 Prices options with Black-Scholes PDE
bodytrack 471 Tracks a markerless human body
canneal 301 Minimizes the routing cost of a chip design with cache-

aware simulated annealing
facesim 1230 Simulates human face motions
ferret 738 Image search
fluidanimate 812 Fluid motion physics for realtime animation with SPH

algorithm
raytrace 1970 Uses physical simulation for visualization
streamcluster 629 Computes an approximation for the optimal clustering

of a stream of data points
swaptions 612 Prices a portfolio of swaptions with the Heath-Jarrow-

Morton framework
vips 297 Applies transformations to an image
x264 265 MPEG-4 AVC / H.264 video encoder

Ja
va

N
on

-s
ca

la
bl

e

SJ

compress 5.3 Lempel-Ziv compression
jess 1.4 Java expert system shell
db 6.8 Small data management program
javac 3.0 The JDK 1.0.2 Java compiler
mpegaudio 3.1 MPEG-3 audio stream decoder
mtrt 0.8 Dual-threaded raytracer
jack 2.4 Parser generator with lexical analysis

D6 antlr 2.9 Parser and translator generator
bloat 7.6 Java bytecode optimization and analysis tool

D9

avrora 11.3 Simulates the AVR microcontroller
batik 4.0 Scalable Vector Graphics (SVG) toolkit
fop 1.8 Output-independent print formatter
h2 14.4 An SQL relational database engine in Java
jython 8.5 Python interpreter in Java
pmd 6.9 Source code analyzer for Java
tradebeans 18.4 Tradebeans Daytrader benchmark
luindex 2.4 A text indexing tool

JB pjbb2005 10.6 Transaction processing, based on SPECjbb2005

Ja
va

S
ca

la
bl

e

D9

eclipse 50.5 Integrated development environment
lusearch 7.9 Text search tool
sunflow 19.4 Photo-realistic rendering system
tomcat 8.6 Tomcat servlet container
xalan 6.9 XSLT processor for XML documents

Table 1. Benchmark Groups; Source: SI: SPEC CINT2006, SF:
SPEC CFP2006, PA: PARSEC, SJ: SPECjvm, D6: DaCapo 06-10-MR2,
D9: DaCapo 9.12, and JB: pjbb2005; Source, Name, and reference
run times in seconds.

Execution Time Power
average max average max

Average 1.2% 2.2% 1.5% 7.1%
Native Non-scalable 0.9% 2.6% 2.1% 13.9%

Native Scalable 0.7% 4.0% 0.6% 2.5%
Java Non-scalable 1.6% 2.8% 1.5% 7.7%

Java Scalable 1.8% 3.7% 1.7% 7.9%

Table 2. Aggregate 95% confidence intervals for measured execu-
tion time and power, showing average and maximum error across
all processor configurations, and all benchmarks.

setting, it is impossible to meaningfully separate language from
workload. We therefore offer no commentary on the virtue of a lan-
guage choice, but rather, reflect the measured reality of two work-
load classes that are ubiquitous in today’s software landscape.

We draw 61 benchmarks from six suites to populate these
groups. We weight each group equally in our aggregate measure-
ments; see Section 2.6 for more details on aggregation. We use
Java to represent the broader class of managed languages. Table 1
shows the benchmarks, their groupings, the suite of origin, the ref-
erence running time (see Section 2.6) to which we normalize our
results, and a short description. In the case of native benchmarks,
all single-threaded benchmarks are non-scalable and all parallel
multithreaded native benchmarks are scalable on up to eight hard-
ware contexts, the maximum we explore. By scalable, we mean
that adding hardware contexts improves performance. Bienia et al.
show that the PARSEC benchmarks scale up to 8 hardware con-
texts [2]. To create a comparable group of scalable Java programs,
we put multithreaded Java programs that do not scale well in the
non-scalable category.

Native Non-scalable Benchmarks We use 27 C, C++, and For-
tran codes from the SPEC CPU2006 suite [31] for Native Non-scalable
and all are single-threaded. The 12 SPEC CINT benchmarks repre-
sent compute-intensive integer applications that contain sophisti-
cated control flow logic, and the 15 SPEC CFP benchmarks rep-
resent compute-intensive floating-point applications. These native
benchmarks are compiled ahead-of-time. We chose Intel’s icc com-
piler because we found that it consistently generated better per-
forming code than gcc. We compiled all of the Native Non-scalable
benchmarks with version 11.1 of the 32-bit Intel compiler suite us-
ing the -o3 optimization flag, which performs aggressive scalar
optimizations. This flag does not include any automatic paralleliza-
tion. We compiled each benchmark once, using the default In-
tel compiler configuration, without setting any microarchitecture-
specific optimizations, and used the same binary on all platforms.
We exclude 410.bwaves and 481.wrf because they failed to execute
when compiled with the Intel compiler. Three executions are pre-
scribed by SPEC. We report the mean of these three successive
executions. Table 2 shows that aggregate 95% confidence intervals
are low for execution time and power: 1.2% and 1.5% respectively.

Native Scalable Benchmarks The Native Scalable benchmarks
consists of 11 C and C++ benchmarks from the PARSEC suite [2].
The benchmarks are intended to be diverse and forward looking
parallel algorithms. All but one uses POSIX threads and one con-
tains some assembly code. We exclude freqmine because it is not
amenable to our scaling experiments, in part, because it does not
use POSIX threads. We exclude dedup from our study because it has
a large working set that exceeds the amount of memory available on
the 2003 Pentium 4 (130). The multithreaded PARSEC benchmarks
include gcc compiler configurations, which worked correctly. The
icc compiler failed to produce correct code for many of the PAR-
SEC benchmarks with similar configurations. We used the PARSEC
default gcc build scripts with gcc version 4.4.1. The gcc scripts use
-O3 optimization. We leave systematic comparisons using both

3 2011/2/2



icc and gcc to future work. We report the mean of five successive
executions of each benchmark. We use five executions, which as
Table 2 shows, gives low aggregate 95% confidence intervals for
execution time and power: 0.9% and 2.1% on average.

Java Non-scalable Benchmarks The Java Non-scalable group in-
cludes benchmarks from SPECjvm, both releases of DaCapo, and
pjbb2005 that do not scale well. It includes both single-threaded and
multithreaded benchmarks. SPECjvm is intended to be representa-
tive of client-side Java programs. Although the SPECjvm bench-
marks are over ten years old and Blackburn et al. have shown
that they are simple and have a very small instruction cache and
data footprint [4], many researchers still use them. The DaCapo
Java benchmarks are intended to be diverse, forward-looking, and
non-trivial [4, 32]. The benchmarks come from major open source
projects under active development. Researchers have not reported
extensively on the 2009 release, but it was designed to expose
richer behavior and concurrency on large working sets. We ex-
clude tradesoap because its heavy use of sockets suffered from time-
outs on the slowest machines. We use pjbb2005, which is a fixed-
workload variant of SPECjbb2005 [30] that holds the workload, in-
stead of time, constant. We configure pjbb2005 with 8 warehouses
and 10,000 transactions per warehouse. We include the follow-
ing multithreaded benchmarks in Java Non-scalable: pjbb2005, avrora,
batik, fop, h2, jython, pmd, and tradebeans. As we show below, these
applications do not scale well. Section 2.2 discusses the measure-
ment methodology for Java. Table 2 indicates low aggregate 95%
confidence intervals for execution time and power: 1.6% and 1.5%.

Java Scalable Benchmarks We include the multithreaded Java
benchmarks in Java Scalable that scale similarly to the Native Scal-
able benchmarks. Figure 1 shows the scalability of the multi-
threaded Java benchmarks. The five most scalable are: sunflow,
xalan, tomcat, lusearch and eclipse, all from DaCapo 9.12. Together,
they speed up on average by a factor of 3.4 given eight hardware
contexts compared to one context on the i7 (45). Our Native Scalable
benchmarks scale better on this hardware, improving by a factor of
3.8. Although eliminating lusearch and eclipse would improve aver-
age scalability, it would reduce the number of benchmarks to three,
which we believe is insufficient. Table 2 shows low aggregate 95%
confidence intervals for execution time and power: 1.8% and 1.7%.

2.2 Java Virtual Machines and Measurement Methodology
We use Java as the managed language representative in part be-
cause of its mature Java Virtual Machine (JVM) technology, which
includes high performance garbage collection, profiling, and dy-
namic optimizations. We report Oracle (Sun) HotSpot build 16.3-
b01 Java 1.6.0 Virtual Machine. We did some additional experi-
ments with Oracle JRockit build R28.0.0-679-130297 and IBM J9
build pxi3260sr8. Their average performance is similar to HotSpot,
but individual benchmarks vary substantially. We observe aggre-
gate power differences of up to 10% between JVMs [12]. Explor-
ing the influence of the native compilers and JVMs on power and
energy is an interesting avenue for future research.

To measure both Java Non-scalable and Java Scalable, we follow
the recommended methodologies for measuring Java [5, 14]. We
use the -server flag and fix the heap size at a generous 3× the
minimum required for each benchmark. We did not set any other
JVM flags. We report the fifth iteration of each benchmark within
a single invocation of the JVM to capture steady state behavior.
This methodology avoids class loading and heavy compilation ac-
tivity that often dominates the early phases of execution. The fifth
iteration may still have a small amount of compiler activity, but
has sufficient time to create optimized frequently executed code.
We perform this process twenty times and report the mean. Table 2
reports the measured error. We require twenty invocations to gener-

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

4.50 

su
nf

lo
w
 

xa
la
n 

to
m

ca
t 

lu
se

ar
ch

 

ec
lip

se
 

pj
bb

20
05

 

m
trt

 

tra
de

be
an

s 

jy
th

on
 

av
ro

ra
 

ba
tik

 

pm
d h2

 

4
C

2
T

 /
 1

C
1

T
 

Scalability: Java Multithreaded 

Figure 1. Scalability of Java multithreaded benchmarks on i7 (45).

ate a statistically stable result because the adaptive JIT compilation
and garbage collection induce non-determinism. In contrast to the
compiled ahead-of-time native configurations, Java compilers may
dynamically produce microarchitecture-specific code.

2.3 Operating System
We perform all the experiments using 32-bit Ubuntu 9.10 Karmic
with the 2.6.31 Linux kernel. We use a 32-bit OS and compiler
builds because the 2003 Pentium 4 (130) does not support 64-bit.
Exploring the impact of word size is also interesting future work.

2.4 Hardware Platforms
We use eight IA32 processors, manufactured by Intel using four
process technologies (130nm, 65nm, 45nm, and 32nm), repre-
senting four microarchitectures (NetBurst, Core, Bonnell, and Ne-
halem). Table 3 lists processor characteristics: uniquely identifying
sSpec number, release date / price; CMP and SMT (nCmT means
n cores, m SMT threads per core), die characteristics; and mem-
ory configuration. Intel sells a large range of processors for each
microarchitecture—the processors we use are just samples within
that space. Most of our processors are mid-range desktop proces-
sors. The release date and release price in Table 3 provides the
context regarding Intel’s placement of each processor in the mar-
ket. The two Atoms and the Core 2Q (65) Kentsfield are extreme
points at the bottom and top of the market respectively.

2.5 Power Measurements
In contrast to whole system power studies [3, 20, 22], we measure
on-chip power. Whole system studies measure AC current to an en-
tire computer, typically with a clamp ammeter. To measure on-chip
power, we must isolate and measure DC current to the processor
on the motherboard, which cannot be done with a clamp amme-
ter. We use Pololu’s ACS714 current sensor board, following prior
methodology [26]. The board is a carrier for Allegro’s±5A ACS714
Hall effect-based linear current sensor. The sensor accepts a bidi-
rectional current input with a magnitude up to 5A. The output is an
analog voltage (185mV/A) centered at 2.5V with a typical error of
less than 1.5%. The sensor on i7 (45), which has the highest power
consumption, accepts currents with magnitudes up to 30A.

Each of our experimental machines has an isolated power sup-
ply for the processor on the motherboard, which we verified by ex-
amining the motherboard specification and confirmed empirically.
This requirement precludes measuring for example the Pentium M,
which would have given us a 90nm processor. We place the sensors
on the 12V power line that supplies only the processor. We exper-
imentally measured voltage and found it was very stable, varying
less than 1%. We send the measured values from the current sen-

4 2011/2/2



Release Price CMP LLC Clock Trans Die VID Range TDP FSB B/W DRAM
Processor µArch Processor sSpec Date USD SMT B GHz nm M mm2 V (W) MHz GB/s Model
Pentium 4 NetBurst Northwood SL6WF May ’03 — 1C2T 512K 2.4 130 55 131 — 66 800 — DDR-400

Core 2 Duo E6600 Core Conroe SL9S8 Jul ’06 $316 2C1T 4M 2.4 65 291 143 0.85 - 1.50 65 1066 — DDR2-800
Core 2 Quad Q6600 Core Kentsfield SL9UM Jan ’07 $851 4C1T 8M 2.4 65 582 286 0.85 - 1.50 105 1066 — DDR2-800

Core i7 920 Nehalem Bloomfield SLBCH Nov ’08 $284 4C2T 8M 2.7 45 731 263 0.80 - 1.38 130 — 25.6 DDR3-1066
Atom 230 Bonnell Diamondville SLB6Z Jun ’08 $29 1C2T 512K 1.7 45 47 26 0.90 - 1.16 4 533 — DDR2-800
Core 2 Duo E7600 Core Wolfdale SLGTD May ’09 $133 2C1T 3M 3.1 45 228 82 0.85 - 1.36 65 1066 — DDR2-800
Atom D510 Bonnell Pineview SLBLA Dec ’09 $63 2C2T 1M 1.7 45 176 87 0.80 - 1.17 13 665 — DDR2-800

Core i5 670 Nehalem Clarkdale SLBLT Jan ’10 $284 2C2T 4M 3.4 32 382 81 0.65 - 1.40 73 — 21.0 DDR3-1333

Table 3. The eight experimental processors and key specifications.

Speedup Over Reference Power (W)
Processor NN NS JN JS Avgw Avgb Min Max NN NS JN JS Avgw Avgb Min Max
Pentium 4 0.91 6 0.79 7 0.80 6 0.75 7 0.82 6 0.85 6 0.51 6 1.25 6 42.1 7 43.5 6 45.1 7 45.7 6 44.1 6 43.5 7 34.5 7 50.0 6

Core 2 Duo E6600 2.02 5 2.10 5 1.99 5 2.04 5 2.04 5 2.03 5 1.40 4 2.85 5 24.3 5 26.6 4 26.2 5 28.5 4 26.4 5 25.6 5 21.4 5 32.3 4

Core 2 Quad Q6600 2.04 4 3.62 3 2.04 4 3.09 3 2.70 3 2.41 4 1.39 5 4.67 3 50.7 8 61.7 8 55.3 8 64.6 8 58.1 8 55.2 8 45.6 8 77.3 7

Core i7 920 3.11 2 6.25 1 3.00 2 5.49 1 4.46 1 3.84 1 2.16 2 7.60 1 27.2 6 60.4 7 37.5 6 62.8 7 47.0 7 39.1 6 23.4 6 89.2 8

Atom 230 0.49 8 0.52 8 0.53 8 0.52 8 0.52 8 0.51 8 0.39 8 0.75 8 2.3 1 2.5 1 2.3 1 2.4 1 2.4 1 2.3 1 1.9 1 2.7 1

Core 2 Duo E7600 2.48 3 2.76 4 2.49 3 2.44 4 2.54 4 2.53 3 1.45 3 3.71 4 19.1 3 21.1 3 20.5 3 22.6 3 20.8 3 20.2 3 15.8 3 26.8 3

Atom D510 0.53 7 0.96 6 0.61 7 0.86 6 0.74 7 0.66 7 0.41 7 1.17 7 3.7 2 5.3 2 4.5 2 5.1 2 4.7 2 4.3 2 3.4 2 5.9 2

Core i5 670 3.31 1 4.46 2 3.18 1 4.26 2 3.80 2 3.56 2 2.39 1 5.42 2 19.6 4 29.2 5 24.7 4 29.5 5 25.7 4 23.6 4 16.5 4 38.2 5

Table 4. Average performance and power characteristics. The rank for each measure is indicated in small italics.

1.0 

10.0 

100.0 

1.0 10.0 100.0 

M
e

a
s

u
re

d
 P

o
w

e
r 

(W
) 

(l
o

g
) 

TDP (W) (log) 

P4 (130) 

C2D (65) 

C2Q (65) 

i7 (45) 

Atom (45) 

C2D (45) 

AtomD (45) 

i5 (32) 

Figure 2. Measured benchmark power for each processor.

20 

30 

40 

50 

60 

70 

80 

90 

100 

2.00 3.00 4.00 5.00 6.00 7.00 8.00 

P
o

w
e

r 
(W

) 

Performance/Reference 

Power Performance Distribution i7 (45) 

Native Non-Scale 

Native Scale 

Java Non-Scale 

Java Scale 

Figure 3. Benchmark power and performance on the i7 (45).

sor to the measured machine’s USB port using Sparkfun’s Atmel
AVR Stick, which is a simple data-logging device. We use a data-
sampling rate of 50Hz. We execute each benchmark, log its mea-
sured power values, and then compute the average power consump-
tion over the duration of the benchmark.

To calibrate the meters, we use a current source to provide 28
reference currents between 300mA and 3A, and for each meter
record the output value (an integer in the range 400-503). We
compute linear fits for each of the sensors. Each sensor has an R2

value of 0.999 or better, which indicates an excellent fit [12]. The
measurement error for any given sample is about 1%, which reflects
the fidelity of the quantization (103 points).

Thermal Design Power (TDP) TDP is the nominal thermal de-
sign power for a processor, i.e., the nominal amount of power the
chip is designed to dissipate without exceeding the maximum tran-
sistor junction temperature. Table 3 indicates the TDP for each of
our processors. Because measuring real processor power is difficult
and TDP is readily available, TDP is often substituted for real mea-
sured power. Figure 2 shows that this substitution is problematic.
It plots measured power for each benchmark on each stock pro-
cessor as a function of TDP, on a logarithmic scale. Note that for
these benchmarks TDP is strictly higher than actual power, and that
measured power varies greatly among the benchmarks. This vari-

ation is highest on the i7 (45) and i5 (32), which likely reflects the
advanced power management integrated into these processors [29].
For example, on the i7 (45), measured power varies between 23W
for 471.omnetpp and 89W for fluidanimate! The smallest variation
between maximum and minimum is on the Atom (45), but even this
is around 30%. Manufacturers sometimes report the same TDP
for a family of microarchitectures. For example, Core 2D (65) and
Core 2D (45) have the same TDP of 65W as shown in Table 3,
yet their measured power differs by around 40-50% as shown in
Figure 2. In summary, while TDP loosely correlates with power
consumption, it does not provide a good estimate for: (1) maxi-
mum power consumption of individual processors; (2) comparing
among processors; or (3) approximating benchmark-specific power
consumption.

2.6 Reference Execution Time, Reference Energy, and
Aggregation

As is standard, we weight each benchmark equally within each
workload group, since the execution time of the benchmark is not
necessarily an indicator of benchmark importance. Furthermore,
we want to represent each of our benchmark groups equally. These
goals require (1) a reference execution time and a reference energy
value for normalization, and (2) an average of the benchmarks in

5 2011/2/2



each workload group. Since the average power of a benchmark is
not directly biased by execution time, we use it directly. We also
normalize energy to a reference, since energy = power × time.

Table 1 shows the reference running time we use to normal-
ize the execution time and energy results. To avoid biasing perfor-
mance measurements to the strengths or weaknesses of one archi-
tecture, we normalize individual benchmark execution times to its
average execution time executing on four architectures. We choose
the Pentium 4 (130), Core 2D (65), Atom (45), and i5 (32) to capture
all four microarchitectures and all four technology generations in
this study. The reference energy is the average power on these four
processors times the average runtime. Given a power and time mea-
surement, we compute energy and then normalize it to the reference
energy.

Table 1 shows that the native workloads tend to execute for
much longer than the managed workloads. Measuring their code
bases is complicated because of the heavy use of libraries by the
managed languages and by PARSEC. However, some native bench-
marks are tiny and many PARSEC codes are fewer than 3000 lines
of non-comment code. These estimates show that the size of the na-
tive and managed application code bases alone (excluding libraries)
does not explain the longer execution times. There is no evidence
that native execution times are due to more sophisticated applica-
tions; instead these longer execution times are likely due to more
repetition.

The averages equally weight each of the four benchmark
groups. We report results for each group by taking the arithmetic
mean of the benchmarks within the group. We use the mean of the
four groups for the overall average. This aggregation avoids bias
due to the varying number of benchmarks within each group (from
5 to 27). Table 4 shows the measured performance and power for
each of the processors and each of the benchmark groups. The table
indicates the weighted average (Avgw), which we use throughout
the paper, and for comparison, the simple average of the bench-
marks (Avgb). The table also records the highest and lowest perfor-
mance and power measures seen on each of the processors.

2.7 Benchmark Power / Performance Diversity
Figure 3 shows the range of power and performance among our
benchmarks and among our workload groups. Native / managed is
differentiated by color and scalable / non-scalable is differentiated
by shape for each benchmark. The graph plots performance of
the i7 (45) normalized to the reference performance on the x-axis,
and power on the y-axis. Unsurprisingly, the scalable benchmarks
perform the best and consume the most power, since the i7 (45)
has eight hardware contexts. Non-scalable benchmarks however
exhibit a wide range of performance and power characteristics as
well. Overall, the benchmarks exhibit a diversity of power and
performance characteristics.

2.8 Processor Configuration Methodology
We evaluate the eight stock processors and configure them for a
total of 45 processor configurations. We produce power and per-
formance data for each benchmark that corresponds to Figure 3 for
each configuration [12]. To explore the influence of architectural
features, we control for clock speed and hardware contexts. We se-
lectively down-clock the processors, disable cores, disable simul-
taneous multithreading (SMT), and disable Turbo Boost [19]. Intel
markets SMT as Hyper-Threading [18]. The stock configurations
of Pentium 4 (130), Atom (45), Atom D (45), i7 (45), and i5 (32) include
SMT (Table 3). The stock configurations of the i7 (45) and i5 (32)
include Turbo Boost, which automatically increases frequency be-
yond the base operating frequency when the core is operating below
power, current, and temperature thresholds [19]. We control each
variable via the BIOS. We experimented with operating system

configuration, which is far more convenient, but it was not suffi-
ciently reliable. For example, operating system scaling of hardware
contexts often caused power consumption to increase as hardware
resources were decreased! Extensive investigation revealed a bug in
the Linux kernel [23]. We use all the means at our disposal to isolate
the effect of various architectural features using stock hardware,
but often the precise semantics are undocumented. Notwithstand-
ing such limitations, these processor configurations help quantita-
tively explore how a number of features influence power and per-
formance in real processors.

3. Feature Analysis
We organize the results into two sections. This first section explores
the energy impact of hardware features through controlled experi-
ments. The second section explores historical trends and performs
an energy and performance Pareto efficiency analysis at the 45nm
technology node. We present two pairs of graphs for feature anal-
ysis experiments as shown in Figure 4 for example. The top graph
compares relative power, performance, and energy as an average
of the four workload groups. The bottom graph breaks down en-
ergy by workload group. In these graphs, higher is better for per-
formance. Lower is better for power and energy. Because of the
volume of data and analysis, we cannot present all our data and
sometimes refer to data that we gathered, but do not present. In
these cases, we cite the complete, on line data as appropriate [12].
We organize the analysis by calling out, labeling, and numbering
summary points as ARCHITECTURE FINDINGS and WORKLOAD
FINDINGS.

3.1 Chip Multiprocessors
We measure the effect of enabling one or two cores. We disable
Simultaneous Multithreading (SMT) to maximally expose thread-
level parallelism to the Chip MultiProcessor (CMP) hardware fea-
ture. We also disable Turbo Boost because its power and perfor-
mance behavior is affected by the number of idle cores. (Section 3.6
explores Turbo Boost.) Figure 4(a) shows the average power, per-
formance, and energy effects of moving from one core to two cores
for the i7 (45) and i5 (32) processors. Figure 4(b) breaks down the
energy effect as a function of benchmark group. While average en-
ergy is reduced by 9% on the i5 (32), it is increased by 12% on
the i7 (45). Figure 4(a) shows that the source of this difference is
that the i7 (45) experiences twice the power overhead for enabling a
core as the i5 (32), while producing roughly the same performance
improvement.

ARCHITECTURE FINDING 1. When comparing one core to
two, enabling a core is not consistently energy efficient.

Figure 4(b) shows that Native Non-scalable and Java Non-scalable
suffer the most energy overhead with the addition of another core
on the i7 (45). As expected, performance for Native Non-scalable is
unaffected [12]. However, turning on an additional core for Native
Non-scalable leads to a power increase of 4% and 14% respectively
for the i5 (32) and i7 (45), translating to energy overheads.

More interesting is that Java Non-scalable does not incur en-
ergy overhead on the i5 (32). Careful examination reveals that the
single-threaded Java Non-scalable experience performance gains
from CMP on both processors. Figure 6 shows the scalability of the
single-threaded subset of Java Non-scalable on the i7 (45), with SMT
disabled, comparing one and two cores. We were very surprised
that most of the single-threaded Java workloads exhibit measur-
able speedups with a second core. On the i5 (32), the Java speedups
offset the power overhead of enabling additional cores. Although
these Java benchmarks themselves are single-threaded, the JVMs
on which they execute are not.

6 2011/2/2



1.32 

1.57 

1.12 

1.34 1.29 

0.91 

0.60 

0.70 

0.80 

0.90 

1.00 

1.10 

1.20 

1.30 

1.40 

1.50 

1.60 

performance power energy 

2
 C

o
r
e

s
 /

 1
 C

o
r
e

 

Effect of CMP 

i7 (45) i5 (32) 

(a) Average impact of doubling cores.

1.13 1.09 
1.19 

1.08 1.04 

0.81 

1.00 

0.82 

0.60 

0.70 

0.80 

0.90 

1.00 

1.10 

1.20 

Native 

Non-scale 

Native 

Scale 

Java 

Non-scale 

Java 

Scale 

2
 C

o
re

s
 /

 1
 C

o
re

 

Energy Effect of CMP 

i7 (45) i5 (32) 

(b) Workload energy impact of doubling cores.

Figure 4. Comparing two cores to one without SMT or Turbo
Boost.

1.06  1.06  0.98 
1.14  1.15 

0.97 

1.24 
1.10 

0.86 

1.17  1.10 
0.89 

0.60 
0.70 
0.80 
0.90 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 

performance  power  energy 

2 
Th
re
ad
s 
/ 1
 T
hr
ea
d 

Effect of SMT (1 core) 

Pentium 4 (130)  i7 (45)  Atom (45)  i5 (32) 

(a) Average impact of two-way SMT.

1.01 

0.87 

1.11 

0.95 
1.01 

0.93 

1.03 
0.95 

1.05 

0.75 

0.91 

0.78 

1.00 

0.83 

0.96 

0.82 

0.60 

0.70 

0.80 

0.90 

1.00 

1.10 

1.20 

Native 
Nonscale 

Native 
Scale 

Java 
Nonscale 

Java 
Scale 

2 
Th
re
ad
s 
/ 1
 T
hr
ea
d 

Energy Effect of SMT (1 core) 

Pentium 4 (130)  i7 (45)  Atom (45)  i5 (32) 

(b) Workload energy impact of two-way SMT.

Figure 5. Two-way SMT impact with respect to a single core.

0.90 

1.00 

1.10 

1.20 

1.30 

1.40 

1.50 

1.60 

an
tlr

 

lu
in
de

x 
fo

p 

ja
ck

 
db

 

bl
oa

t 

je
ss

 

co
m

pr
es

s 

m
pe

ga
ud

io
 

ja
va

c 

2
C

1
T

 /
 1

C
1

T
 

Scalability: Java Single Threaded 

Figure 6. CMP impact for single-threaded Java.

WORKLOAD FINDING 1. The JVM often induces signifi-
cant amounts of parallelism into the execution of single-
threaded Java benchmarks.

Since the JVM’s runtime services, such as profiling, just-in-time
(JIT) compilation, and garbage collection, are concurrent and par-
allel, the JVM provides substantial scope for parallelization, even
within these ostensibly sequential applications. To understand these
effects better, we instrumented the HotSpot JVM to separately
count cycles and retired instructions for the JVM and application.

These experiments isolate the sources of parallelism from HotSpot
to the JIT compiler and garbage collector.

Most benchmarks spend around 90-99% of their time in the ap-
plication thread, but for example, antlr spends as much as 50% of
its time in the JVM. Although db spends 95% of its instructions
in single-threaded application code, it experiences a 30% improve-
ment when it uses two hardware contexts on the i7 (45). Perfor-
mance counter measurements show that memory system perfor-
mance improvements were the cause of this surprising result. The
DTLB experiences a factor of 2.5 fewer misses when more cores
were available. Our hypothesis is that when the garbage collector
executes on other cores it dramatically reduces the collector dis-
placement effect on application data in local caches. These memory
and cache behaviors are clearly significant but they are very subtle
and need further exploration.

3.2 Simultaneous Multithreading
We measured the effect of simultaneous multithreading (SMT) [34]
by disabling SMT at the BIOS on the Pentium 4 (130), Atom (45),
i5 (32), and i7 (45). Each processor supports two-way SMT. On
the i5 (32) and i7 (45) multiprocessors, we use only one core to
ensure that SMT is the sole opportunity for thread-level parallelism.
We disable Turbo Boost since it may vary the clock rate. Each
processor is otherwise in its stock configuration. Figure 5(a) shows
the overall power, performance, and energy impact of enabling
SMT on a single core. Singhal states that the small amount of
logic that is exclusive to SMT consumes very little power [29].
Nonetheless, this logic is integrated, so SMT does contribute to

7 2011/2/2



total power even when disabled. These results therefore slightly
underestimate the power cost of SMT. The performance advantage
of SMT is significant. Notably, on the i5 (32) and Atom (45), SMT
improves average performance significantly without much cost in
power, leading to net energy savings.

ARCHITECTURE FINDING 2. SMT delivers substantial en-
ergy savings for the i5 (32) and Atom (45).

Given that SMT was motivated and continues to be motivated by
the challenge of filling issue slots and hiding latency in wide issue
superscalars [29, 34], it appears counter intuitive that performance
on the dual-issue Atom (45) should benefit so much more from SMT
than the quad-issue i7 (45) and i5 (32). One potential explanation is
that the in-order Atom (45) is more restricted in its capacity to fill
issue slots. Compared to other in-order processors, the Atom (45)
has a relatively deep pipeline. Compared to the other processors
in this study, the Atom (45) has much smaller caches. These features
accentuate the need to hide latency, and therefore the value of SMT.

The performance improvements on the Pentium 4 (130) due to
SMT are half to one third that of the newer processors, and con-
sequently there is no net energy advantage. This result is not so
surprising given that the Pentium 4 (130) is among the first commer-
cial implementations of SMT. Furthermore, the i5 (32) and i7 (45)
have more issue slots to fill and their much larger cache capacities
and memory bandwidth better sustain the demands of SMT.

WORKLOAD FINDING 2. On the Pentium 4 (130), SMT de-
grades performance for Java Non-scalable.

SMT is particularly unhelpful to Java on the Pentium 4 (130) as
shown in Figure 5(b). It offers substantially lower performance im-
provements on Java Scalable and a performance degradation on Java
Non-scalable [12], the latter leading to an 11% energy overhead. Fig-
ure 5(b) shows that, as expected, Native Non-scalable benchmarks ex-
perience very little energy overhead due to enabling SMT, whereas
Figure 4(b) shows that enabling a core incurs a significant power
and thus energy penalty. The scalable benchmarks unsurprisingly
benefit most from SMT.

The effectiveness of SMT is impressive on recent processors
as compared to CMP, particularly given its ‘very low’ die foot-
print [29]. Compare Figure 4 and 5. SMT provides less perfor-
mance improvement than CMP—SMT adds about half as much
performance as CMP on average, but incurs much less power
cost—SMT adds just a quarter of the power of CMP on the i7 (45)
and one third the power on the i5 (32). These factors lead to greater
energy savings on the i7 (45) and i5 (32). These results on the mod-
ern processors show SMT in a much more favorable light than
in Sasanka et al.’s model-based comparative study of the energy
efficiency of SMT and CMP [28].

3.3 Clock Scaling
We vary the processor clock on the i7 (45), Core 2D (45), and i5 (32)
between their minimum and maximum settings and measure the
effect on power and performance. The range of clock speeds are:
1.6 to 2.7GHz for i7 (45); 1.6 to 3.1GHz for Core 2D (45); and 1.2 to
3.5GHz for i5 (32). We uniformly disable Turbo Boost to produce a
consistent clock rate for comparison; Turbo Boost may vary the
clock rate, but only when the clock is set at its highest value.
Each processor is otherwise in its stock configuration. Figures 7(a)
and 7(b) express changes in power, performance, and energy with
respect to doubling in clock frequency over the range of clock
speeds to normalize and compare across architectures.

The three processors experience broadly similar increases in
performance of around 80%, but power differences vary substan-
tially, from 70% to 180%. On the i7 (45) and Core 2D (45), the perfor-
mance increases require disproportional power increases—conse-

83% 

180% 

60% 73% 

159% 

56% 
78%  73% 

4% 10% 
10% 
30% 
50% 
70% 
90% 
110% 
130% 
150% 
170% 

performance  power  energy 

%
 C
ha
ng
e 

Effect of Doubling Clock Frequency 

i7 (45)  C2D (45)  i5 (32) 

(a) Average impact of doubling clock.

63%  68% 
50% 

62% 57% 
46%  45% 

78% 

10% 

1% 

5% 

0% 

10% 
0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

Native 
Nonscale 

Native 
Scale 

Java 
Nonscale 

Java 
Scale 

%
 C
ha
ng
e 

Energy Effect of Doubling Clock Frequency 

i7 (45)  C2D (45)  i5 (32) 

(b) Workload energy impact of doubling clock.

0.80 

0.90 

1.00 

1.10 

1.20 

1.30 

1.40 

1.50 

1.60 

1.00 1.50 2.00 2.50 

E
n

e
rg

y
 /

 E
n

e
rg

y
 a

t 
b

a
s

e
 f

re
q

u
e

n
c

y
 

Performance / Performance at base frequency 

Energy Effect of Clock Scaling 

i7 (45) 

C2D (45) 

i5 (32) 

(c) Average energy performance curve, each point is a clock speed.

5.00 

10.00 

15.00 

20.00 

25.00 

30.00 

1.00 1.50 2.00 2.50 3.00 3.50 

P
o

w
e

r 
(W

) 

Performance/Reference Performance) 

Absolute Power By Workload: i7 (45) & i5 (32) 

Native 

Non-scale 

Native 

Scale 

Java 

Non-scale 

Java 

Scale 

(d) Absolute power (Watts) and performance on the i7 (45) (green) and
i5 (32) (red) by benchmark group, each point is a clock speed.

Figure 7. The impact of clock scaling in stock configurations.

8 2011/2/2



quently energy consumption increases by about 60% as the clock
is doubled. The i5 (32) is starkly different—doubling its clock leads
to a slight energy reduction.

ARCHITECTURE FINDING 3. The i5 (32) does not increase
energy consumption as the clock increases, in contrast to
the i7 (45) and Core 2D (45).

Figure 7(c) shows that this result is consistent across the range
of i5 (32) clock rates. A number of factors may explain why the
i5 (32) performs relatively so much better at its highest clock rate:
(a) the i5 (32) is a 32nm process, while the others are 45nm; (b) the
power-performance curve is non-linear and these experiments may
observe only the upper (steeper) portion of the curves for i7 (45)
and Core 2D (45); (c) although the i5 (32) and i7 (45) share the same
microarchitecture, the second generation i5 (32) likely incorporates
energy improvements; (d) the i7 (45) is substantially larger than the
other processors, with four cores and a larger cache.

WORKLOAD FINDING 3. The power / performance behav-
ior of Native Non-scalable differs from the three other work-
load groups.

Figure 7(b) shows that doubling the clock on the i5 (32) roughly
maintains or improves energy consumption of all benchmark
groups, with Native Non-scalable improving the most. For the i7 (45)
and Core 2D (45), doubling the clock raises energy consumption.
Figure 7(d) shows that Native Non-scalable has a different power /
performance behavior compared to the other workloads and that
this difference is largely independent of clock rate. The Native Non-
scalable benchmarks draw less power overall, and power increases
less steeply as a function of performance increases. Native Non-
scalable (SPEC CPU2006) is the most widely studied workload in
the architecture literature, but it is the outlier. These results rein-
force the importance of including scalable and managed workloads
in energy evaluations.

3.4 Die Shrink
We used processor pairs from the Core (Core 2D (65)/ Core 2D (45))
and Nehalem (i7 (45)/ i5 (32)) microarchitectures to explore die
shrink effects. These stock hardware comparisons are imperfect be-
cause they are not straightforward die shrinks. To limit the differ-
ences, we control for hardware parallelism by limiting the i7 (45)
to two cores, and control for clock speed by running both Cores at
2.4GHz and both Nehalems at 2.66GHz. We also run them at their
native speeds. Nonetheless, we cannot control for the cache size
and other differences. For the Core, it appears that the die shrink
was fairly straightforward, except that the Core 2D (45) uses a 3MB
triple-port cache, whereas the Core 2D (65) uses a 4MB dual-port
cache. Nehalem’s changes are more extensive and include a reduc-
tion in the number of cores, the size of the cache, a more limited
DMI interconnect instead of QPI, the integration of a PCIe con-
troller in the i5 (32), and the inclusion of a GPU on a separate 45nm
die within the same package. The GPU is not exercised by any of
our benchmarks, but is nonetheless included in our power measure-
ments. Notwithstanding these caveats, these architectures present
an opportunity to compare power and performance across process
technologies.

ARCHITECTURE FINDING 4. A die shrink is remarkably
effective at reducing energy consumption, even when con-
trolling for clock frequency.

Figure 8(a) shows the power and performance effects of the die
shrinks with the stock clock speeds for all the processors. The
newer processors are significantly faster at their higher stock clock
speeds and significantly more power efficient. Figure 8(b) shows

1.25 

0.79 
0.65 

1.14 

0.77 0.69 

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

performance power energy 

N
e

w
 /

 O
ld

 

Effect of Die Shrink: Native Frequency 

Core Nehalem 2C2T 

(a) Average impact of die shrink with native clocks.

1.01 

0.55 0.54 

0.90 

0.53 0.60 

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

performance power energy 

N
e

w
 /

 O
ld

 

Effect of Die Shrink:  Matched Frequency 

Core 2.4GHz Nehalem 2C2T 2.6GHz 

(b) Average impact of a die shrink with matched clocks.

0.54 0.52 0.54 
0.57 

0.64 

0.57 
0.60 

0.57 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

Native 

Non-scale 

Native 

Scale 

Java 

Non-scale 

Java 

Scale 

N
e

w
 /

 O
ld

 

Energy Effect of Die Shrink: Matched Frequency 

Core 2.4GHz Nehalem 2C2T 2.6GHz 

(c) Workload energy impact of a die shrink with matched clocks.

Figure 8. The impact of a die shrink for Core and Nehalem mi-
croarchitecture families.

the same experiment, but down clocking the newer processors to
match the frequency of their older peers. Down clocking the new
processors improves their relative power and energy advantage
even further. Note that as expected, the die shrunk processors offer
no performance advantage once the clocks are matched, indeed
the i5 (32) performs 10% slower than the i7 (45). However, power
consumption is reduced by 47%. This result is consistent with
expectations, given the lower voltage and reduced capacitance at
the smaller feature size.

ARCHITECTURE FINDING 5. Moving from 45nm to 32nm
repeated the energy improvements of the previous genera-
tion.

9 2011/2/2



Figures 8(a) and 8(b) reveal a striking similarity in the power and
energy savings between the Core (65nm / 45nm) and Nehalem
(45nm / 32nm) die shrinks. This data suggests that Intel was able
to maintain the same rate of energy reduction across each of these
generations. ITRS predicted a 9% increase in frequency and 20%
reduction in power from 45nm to 32nm [21]. Figure 8(a) is more
encouraging, showing a 14% increase in performance and 23%
reduction in power accompanying the 26% increase in stock fre-
quency from the i7 (45) to i5 (32).

3.5 Gross Microarchitecture Change
We explore the power and performance effect of gross microar-
chitectural change through a series of comparisons where we can
match architectural features such as processor clock, degree of
hardware parallelism, process technology, and cache size. The pro-
cessors in this study represent only one or two examples of the
many processors built in each family. For example, Intel sells over
sixty 45nm Nehalems ranging in price from around $190 to over
$3700. However, we chose mainstream processors at similar price
points for the most part. These microarchitecture comparisons are
imperfect, but they provide broader perspective on the processors
and workloads.

Figure 9 compares the Nehalem i7 (45) with with the NetBurst
Pentium 4 (130), Bonnell Atom D (45), and Core 2D (45) microarchi-
tectures, and it compares the Nehalem i5 (32) with the Core 2D (65).
Each comparison configures the Nehalems to match the clock
speed, number of cores, and hardware threads of the other archi-
tecture. It is pleasing, although unsurprising, to see the i7 (45) per-
forming 2.6× faster than the Pentium 4 (130), while consuming just
one third the power, when controlling for clock speed and hardware
parallelism. Much of the 50% power improvement is attributable to
process technology advances (Architecture Finding 4). However,
this comparison does not control for memory speed, nor for three
generations of process technology scaling.

ARCHITECTURE FINDING 6. Controlling for hardware par-
allelism and clock speed, Nehalem performs about 14%
better than Core.

Both the i7 (45) and i5 (32) comparisons to the Core show that the
move from Core to Nehalem yields a small 14% performance im-
provement. This finding is not inconsistent with Nehalem’s stated
primary design goals, i.e., delivering scalability and memory per-
formance. Power increases by 14% when we hold process technol-
ogy constant (i7 (45) / Core 2D (45)) and reduces 45% when we shift
two technology generations (i5 (32) / Core 2D (65)).

ARCHITECTURE FINDING 7. Controlling for technology,
hardware parallelism, and clock speed, the Nehalem has
similar energy efficiency to Core and Bonnell.

The comparisons between the i7 (45) and Atom D (45) and Core 2D (45)
hold process technology constant at 45nm. All three processors are
remarkably similar in energy consumption. This outcome is all the
more interesting because the i7 (45) is disadvantaged since it uses
fewer hardware contexts here than in its stock configuration. Fur-
thermore, the i7 (45) integrates more services on-die, such as the
memory controller, that are off-die on the other processors and thus
outside the scope of the power meters. The i7 (45) improves upon
the Core 2D (45) and Atom D (45) with a more scalable, much higher
bandwidth on-chip interconnect, that is not heavily exercised by
our workloads. It is impressive that despite all of these factors, the
i7 (45) delivers similar energy efficiency to these two 45nm peers.

3.6 Turbo Boost Technology
Intel Turbo Boost Technology on Nehalem processors over-clocks
cores under the following conditions [19]. With Turbo Boost en-
abled, all cores can run one “step” (133MHz) faster if temperature,

2.70 
2.38 

0.85 

2.60 

0.33  0.13 
1.14  1.14  1.00 1.14 

0.55  0.48 
0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

performance  power  energy 

N
e
h
a
le
m
 /
 O
th
e
r
 

Effect of Gross uArch Change 

Bonnell: i7 (45) / AtomD (45)  NetBurst: i7 (45) / Pentium4 (130) 

Core: i7 (45) / C2D (45)  Core: i5 (32) / C2D (65) 

(a) Average impact of a gross µarch change.

0.65 

1.04 
0.84  0.95 

0.12  0.14  0.13  0.13 

0.87 
1.14 

0.99  1.04 

0.45  0.52  0.50  0.47 

0.00 
0.20 
0.40 
0.60 
0.80 
1.00 
1.20 

Native 
Nonscale 

Native 
Scale 

Java 
Nonscale 

Java 
Scale 

N
e
h
a
le
m
 /
 O
th
e
r
 

Energy Effect of Gross uArch Change 

Bonnell: i7 (45) / AtomD (45)  NetBurst: i7 (45) / Pentium4 (130) 

Core: i7 (45) / C2D (45)  Core: i5 (32) / C2D (65) 

(b) Workload energy impact of a gross µarch change.

Figure 9. The impact of gross microarchitectural change.
power, and current conditions allow. When only one core is active,
Turbo Boost may clock it an additional step faster. Turbo Boost
is only enabled when the processor executes at its default highest
clock setting. This feature requires on-chip power sensors which
are currently not exposed to the programmer. We verified empiri-
cally on the i7 (45) and i5 (32) that all cores ran 133MHz faster with
Turbo Boost. When only one core was active, the core ran 266MHz
faster. Since the i7 (45) runs at a lower clock (2.67GHz) than the
i5 (32) (3.46GHz), it experiences a relatively larger boost.

ARCHITECTURE FINDING 8. Turbo Boost is not energy ef-
ficient on the i7 (45).

Figure 10(a) shows the effect of disabling Turbo Boost at the BIOS
on the i7 (45) and i5 (32) in their stock configurations (dark) and
when we limit each machine to a single hardware context (light).
With the single hardware context, Turbo Boost will increment the
clock by two steps if thermal conditions permit. The actual per-
formance changes are well predicted by the clock rate increases.
The i7 (45) clock step increases are 5 and 10%, and the actual per-
formance increases are 4 and 7%. The i5 (32) clock step increases
are 4 and 8%, and the actual performance increases are 3 and 5%.
However, the i7 (45) responds with a substantially higher power in-
crease and consequent energy overhead, while the i5 (32) is essen-
tially energy-neutral.

Figure 10(b) shows that when all hardware contexts are avail-
able (dark), the non-scalable benchmarks consume relatively more
energy than scalable benchmarks on the i7 (45) in its stock configu-
ration. Because the non-scalable native and sometimes Java utilize
only a single core, Turbo Boost will likely increase the clock by
an additional step. Figure 10(a) shows that this technique is power-
hungry on the i7 (45).

10 2011/2/2



1.04 

1.19  1.19 
1.07 

1.49 
1.39 

1.03  1.07  1.04 1.05  1.05  1.00 
0.90 

1.00 

1.10 

1.20 

1.30 

1.40 

1.50 

performance  power  energy 

En
ab
le
d 
/ D
is
ab
le
d 

Effect of Turbo Boost 

i7 (45) 4C2T  i7 (45) 1C1T  i5 (32) 2C2T  i5 (32) 1C1T 

(a) Average impact of Turbo Boost.

1.38 

1.08 

1.21 
1.12 

1.37 
1.45 

1.37  1.36 

1.04  1.03  1.04  1.06 
1.00  0.99  1.03  1.00 

0.90 

1.00 

1.10 

1.20 

1.30 

1.40 

1.50 

Native 
Nonscale 

Native 
Scale 

Java 
Nonscale 

Java 
Scale 

En
ab
le
d 
/ D
is
ab
le
d 

Energy Effect of Turbo Boost 

i7 (45) 4C2T  i7 (45) 1C1T  i5 (32) 2C2T  i5 (32) 1C1T 

(b) Workload energy impact of Turbo Boost.

Figure 10. Workload impact of enabling Turbo Boost.

4. Perspective
To give a broader view, this section: (1) examines the energy trade-
offs made by each processor over time, (2) examines the energy
tradeoffs as a function of transistors count, and (3) conducts a
Pareto energy efficiency analysis for our benchmarks running on
the 45nm processors. This section presents processor performance
relative to the reference performance for each benchmark shown in
Table 1 and described in Section 2.6. We use the same methodol-
ogy for energy, but because power is not dependent on benchmark
length, we present measured power directly.

4.1 Historical Overview
Figure 11(a) plots the power and performance for each processor
in their stock configuration relative to the reference performance,
using a log / log scale. Both graphs in Figure 11 use the same color
for all the experimental processors in the same family. The shapes
encode release age: a square is the oldest, the diamond is next, and
the triangle is the youngest, smallest technology in the family.

While mobile devices have historically optimized for power,
general purpose processor design has not. Several results stand out
that illustrate that power is now a first-order design goal and trumps
performance in some cases. (1) The Atom (45) and Atom D (45) are
designed as low power processors for a different market, however
they do run all these benchmarks, and indeed they are the most
power efficient processors. Compared to the Pentium 4 (130), they
degrade performance modestly and reduce power enormously, con-
suming as little as one twentieth the power. (2) Comparing one
generation between 65nm and 45nm with the Core 2D (65) and
Core 2D (45) shows only a 25% increase in performance, but a 35%

2.00 

20.00 

0.30 3.00 

P
o

w
e
r 

(W
) 

(l
o

g
) 

Performance / Reference Performance (log) 

Power and Performance 

Pentium4 (130) 

C2D (65) 

C2Q (65) 

i7 (45) 

Atom (45) 

C2D (45) 

AtomD (45) 

i5 (32) 

(a) Power / performance tradeoff by processor.

0.02 

0.22 

0.004 

Po
w
er
 / 
Tr
an
si
st
or
s 
(lo
g)
 

Performance / Transistors (log) 

Transistors, Power, & Performance 

Pentium4 (130) 

C2D (65) 

C2Q (65) 

i7 (45) 

Atom (45) 

C2D (45) 

AtomD (45) 

i5 (32) 0.008  0.012  0.016

(b) Power / performance tradeoff as a function of transistors.

Figure 11. Power / performance tradeoff by processor.

drop in power. (3) Comparing the most recent two generations with
the i7 (45) and i5 (32), the figure shows that the i5 (32) delivers about
15% less performance, while consuming about 40% less power.
This result has three root causes: (a) the i7 (45) has four cores instead
of two on the i5 (32), (b) since half the benchmarks are scalable mul-
tithreaded benchmarks, the software parallelism benefits more from
the additional two cores, increasing the advantage to the i7 (45), and
(c) the i7 (45) has significantly better memory performance. Com-
paring the Core 2D (45) to the i5 (32) where the number of proces-
sors are matched, the i5 (32) delivers 50% better performance, while
consuming around 25% more power than the Core 2D (45).

Contemporaneous comparisons also reveal the tension between
power and performance. For example, the contrast between the
Core 2D (45) and i7 (45) shows that the i7 (45) delivers 75% more
performance than the Core 2D (45), but this performance is very
costly in power with an increase of nearly 100%. These processors
thus span a wide range of energy tradeoffs within and across the
generations. Overall, these result indicate that optimizing for both
power and performance is so far considerably more challenging
than optimizing for performance alone.

ARCHITECTURE FINDING 9. Power per transistor is rela-
tively consistent within a microarchitecture family.

Figure 11(b) explores the effect of transistors on power and per-
formance by dividing them by the number of transistors in the
package for each processor. We include all transistors because our
power measurements occur at the level of the package, not the die.
This measure is rough and will downplay results for the i5 (32)
and Atom D (45), each of which have GPUs within the package.

11 2011/2/2



0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.00 2.00 4.00 6.00 

N
o

rm
a

li
z
e

d
 G

ro
u

p
 E

n
e

rg
y

 

Group Performance / Group Reference Performance 

Energy / Performance Pareto Frontiers (45nm) 

Average 

Native Non-scale 

Native Scale 

Java Non-scale 

Java Scale 

Figure 12. Energy / performance Pareto frontiers for our selection
of 45nm processors executing at both stock and at clock and hard-
ware context scaled configurations.

Even though our benchmarks do not exercise the GPUs, we in-
clude them in the totals because the GPU transistor counts on the
Atom D (45) are undocumented. Note the similarity between the
Atom (45), Atom D (45), Core 2D (45), and i5 (32), which at the bot-
tom right of the graph, are the most efficient processors by the tran-
sistor metric. Even though the i5 (32) and Core 2D (45) have five to
eight times more transistors than the Atom (45), they all eek out very
similar performance and power per transistor.

The left-most processors yield the smallest amount of perfor-
mance per transistor. Among these processors, the Core 2D (65) and
i7 (45) yield the least performance per transistor. These two ma-
chines correspond to the ones with the largest (8MB) caches among
our set. This result is consistent with Patt’s observation that very
large caches are a waste of transistors [27], but this result does not
hold for all workloads.

The Pentium 4 (130) is perhaps most remarkable—it yields the
most performance per transistor and consumes the most power
per transistor by a considerable margin. Consider applying the die
shrink parameters from Finding 4 to the Pentium 4 (130) design
across four generations from 130nm to a 32nm. The resulting mi-
croarchitecture would reduce power four fold and increase perfor-
mance two fold, sliding it down and to the right on the graph.

Performance per transistor is inconsistent across microarchitec-
tures, but power per transistor is consistent. Power per transistor
correlates well with microarchitecture, regardless of technology
generation.

4.2 Pareto Analysis at 45nm
The Pareto frontier defines a set of choices that are most Pareto ef-
ficient in a tradeoff space, and identifies the most optimal choices
within the space. Prior research uses the Pareto frontier to explore
tradeoffs of power and performance using models and then derives
potential architectural designs on the frontier [1, 17]. Instead of
models, we present a Pareto frontier derived from measured per-
formance and power on contemporary real processors. We hold
the process technology constant and use the four 45nm processors:
Atom (45), Atom D (45), Core 2D (45), and i7 (45). We expand the num-
ber of processors from four to twenty-nine by configuring the num-
ber of hardware contexts (SMT and CMP), by clock scaling, and by
disabling Turbo Boost. We use the same data as analyzed in Sec-
tion 3. We use the twenty-five non-stock configurations as proxies
for alternative design points. We explore processor configurations
that are most efficient in the performance × energy space.

At
om

(4
5)

1C
2T

@
1.

7G
Hz

Co
re

2D
(4

5)
2C

1T
@

1.
6G

Hz

Co
re

2D
(4

5)
2C

1T
@

3.
1G

Hz

i7
(4

5)
1C

1T
@

2.
7G

Hz
No

TB

i7
(4

5)
1C

1T
@

2.
7G

Hz

i7
(4

5)
1C

2T
@

1.
6G

Hz

i7
(4

5)
1C

2T
@

2.
4G

Hz

i7
(4

5)
2C

1T
@

1.
6G

Hz

i7
(4

5)
2C

2T
@

1.
6G

Hz

i7
(4

5)
4C

1T
@

2.
7G

Hz
No

TB

i7
(4

5)
4C

1T
@

2.
7G

Hz

i7
(4

5)
4C

2T
@

1.
6G

Hz

i7
(4

5)
4C

2T
@

2.
1G

Hz

i7
(4

5)
4C

2T
@

2.
7G

Hz
No

TB

i7
(4

5)
4C

2T
@

2.
7G

Hz

Average ! ! ! ! ! !
Native Non-scalable ! ! ! !

Native Scalable ! ! ! ! ! !
Java Non-scalable ! ! ! ! ! ! !

Java Scalable ! ! ! ! ! !

Table 5. Pareto efficient processor configurations for each bench-
mark group. Stock configurations are indicated in bold.

The set of Pareto efficient choices is determined by plotting all
choices on an energy / performance scatter graph, and then identify-
ing those choices that are not dominated in performance or energy
efficiency by any other choice [12]. Visually these configurations
are the bottom-right-most choices on the graphs in a figure such as
Figure 12.

Table 5 shows the Pareto efficient processor configurations on
the frontier for each of the benchmark groups and the average. Fif-
teen of the twenty-nine processor configurations are represented
in Table 5, the remaining fourteen processors, including all four
Atom D (45) configurations, are not Pareto efficient for any of the five
groupings. As shown in previous sections, the energy and perfor-
mance behavior of each benchmark group differs and consequently,
the selection of most efficient choices differs for each group. No-
tice further that: (1) Native Non-scalable shares only one choice with
any other group, (2) Java Scalable shares the same choices as the
average, and (3) of the eleven choices on the Java Non-scalable and
Java Scalable frontiers, only two are common to both.

It is interesting to note that Native Non-scalable does not include
the Atom (45) in its frontier. This finding contradicts Azizi et al., who
conclude that 2-wide in-order cores and 2-wide out of order cores
are Pareto optimal designs with respect to the Native Non-scalable
benchmarks [1]. Instead we find that all of the Pareto efficient
points for Native Non-scalable are various configurations of the 4-
wide out of order i7 (45).

Figure 12 shows the resulting Pareto frontier curves for each
benchmark group. The curve for a group is constructed by plotting
the energy and performance of the group on each processor and
fitting a polynomial curve through those processors that are Pareto
efficient according to Table 5.

WORKLOAD FINDING 4. Pareto analysis shows energy ef-
ficient architectural design is very sensitive to workload.

The curves for each benchmark group deviate substantially from
the average. Even when the groups share points in common, the
respective points are usually in different places on the graph be-
cause each group exhibits a different energy / performance trade-
off. Comparing the scalable and non-scalable benchmarks at 0.40
normalized energy on the y-axis, it is impressive to see how the ar-
chitectures we evaluate are able to very effectively exploit software
parallelism, pushing the curves to the right, increasing performance
from about 3 to 7 while holding energy constant. This measured
behavior confirms prior model-based observations about the role of
software parallelism in extending the energy / performance curve
to the right [1, 17].

12 2011/2/2



5. Related Work
The processor design literature is full of performance measurement
and analysis, a tradition that began in the 1980s [9, 10]. Unfortu-
nately, despite the growing importance of power, power measure-
ments are relatively rare and new [20].

Measured Power Isci and Martonosi introduce a coordinated
measurement approach that combines real total power using a
clamp ammeter with performance counters for per unit power es-
timation [20]. They measure total power for an Intel Pentium 4 on
the SPEC CPU2000 benchmark suite. Bircher and John [3] perform
a detailed study of power and performance on AMD quad core
Opteron and Phenom processors. They measure power using a se-
ries resistor, sampling the voltage across the resistor at 1KHz. Our
work is complimentary. While the prior work takes a very close
look at power on two processor cores and off-core resources, we
examine trends across microarchitectures and technology genera-
tions.

Le Sueur and Heiser study the energy impact of dynamic volt-
age and frequency scaling (DVFS) on three server-class AMD pro-
cessors fabricated at 130nm, 90nm, and 45nm using one memory-
bound (181.mcf) SPEC CPU2000 benchmark [22]. They measure
the whole system power with a RAM disk to prevent the inclusion
of hard disk power in the measurements. They conclude that as
the technology shrinks to 45nm the energy effectiveness of scaling
down the frequency diminishes due to the increase of static power
in lower voltages. We measure many benchmarks, processors, and
use configuration to understand microarchitecture sensitivity.

Fan et al. study accurately estimating whole system power for
large scale data centers [13]. They find that even the most power-
consuming workloads draw less than 60% of the ‘nameplate’ peak
power consumption. We measure chip power and support their
results by showing that TDP does not predict chip measured power
well on a range of workloads.

Power Models and Simulation Li et al. explore the design space
of chip multiprocessors under various area and thermal constraints
[24]. They combine decoupled trace-driven cache simulation and
cycle-accurate execution-driven multicore simulation with detailed
single-core simulation to achieve high accuracy in power and per-
formance estimation for chip multiprocessors. While Li et al.’s
work uses simulation and is prospective, ours uses direct measures
and is retrospective.

Azizi et al. introduce a joint circuit-architecture design space
exploration framework [1]. They create statistical architectural
models using simple simulations and combine these models with
circuit-level energy-performance tradeoff functions to populate the
single-core energy and performance design space using a subset
of SPEC CPU benchmarks. They use Verilog models synthesized
using a CMOS 90nm standard-cell library to generate the circuit-
level energy and delay tradeoff functions. The framework uses
Pareto optimal tradeoff curves for cycles per instruction versus
energy per instruction to determine microarchitectural parameters,
circuit implementations, and operating voltage and frequency given
performance and energy constraints. Our Pareto analysis uses mea-
surements and is historical rather than predictive.

Charles et al. study and characterize the behavior of Turbo
Boost technology using a Core i7 (45nm) processor with SPEC
CPU2006 and a subset of PARSEC and multithreaded BLAST bench-
marks [8]. They analyze how the rate of memory accesses and the
overall processor load affects Turbo Boost activation. They esti-
mate the energy impact of Turbo Boost using a power model de-
rived from the time spent at different frequencies. Their findings
are similar to ours—they find Turbo Boost is costly in energy, but
we use measurements rather than models. Our Turbo boost study

extends theirs by considering two processors, i7 (45) and i5 (32), and
a diverse set of workloads.

Thermal Design Power (TDP) TDP is widely used in the lit-
erature as an estimate of chip power consumption. Horowitz et
al. study energy across different process technologies while using
TDP to estimate power and SPECmark to estimate performance for
understanding CMOS scaling [17]. Hempstead et al. introduce an
early stage modeling framework, Navigo, for CMP architecture ex-
ploration across future process technologies from 65nm down to
11nm [16]. Navigo models voltage and frequency scaling based on
ITRS [21] and Predictive Technology Models [25]. As the starting
point, Navigo uses reported TDP for power and SPECmarks for
performance and then predicts the power and performance of pro-
cessors in future technologies. Chakraborty uses TDP as the power
envelope for studying CMP power consumption trends in future
technologies [7]. Perhaps it is already well known that TDP is a
poor estimate for actual chip power consumption, but our data sug-
gests these studies need to be reconsidered.

We published preliminary data and analysis of TDP, CMP scal-
ing, and historical trends without the Native Scalable benchmarks in
a workshop paper [11]. The data and methodology here are more
complete and rigorous. For example, the data and analysis include
aggregation by benchmark group, Native Scalable benchmarks, more
samples of all native benchmarks, sensor calibration, sensor valida-
tion, and extensive architecture configuration. Furthermore, all the
feature analysis in Section 3 and the Pareto analysis are new here.

Methodology Although the results show conclusively that man-
aged and native workloads have different responses to architectural
variations, perhaps this result is not or should not be surprising.
However, very few academic publications with processor measure-
ments or simulated designs use Java or any other managed work-
loads. The evaluation methodologies for real processors that we
use here, however, are well developed [5, 14]. Objections to using
managed languages in architectural design include lack of simula-
tor support and simulation time. However, prior work shows how to
modify simulators to handle Java [4]. The modest execution times
of DaCapo were intended to ease experimentation on real proces-
sors and simulators, while also providing substantial and diverse
workloads [4]. Some additional methodologies are needed to simu-
late managed workloads, but prior work has addressed these issues
as well [15].

6. Conclusion
As far as we are aware, this paper is the first to quantitatively study
measured power and performance at the chip level across hard-
ware generations using single threaded and multithreaded, native
and managed workloads. The volume of data and results do not
lend themselves to concise conclusions, but they do offer three rec-
ommendations. Manufacturers: (1) Expose on-chip power meters
to the community. Researchers: (2) Use both managed and native
workloads. (3) Measure power and performance to understand and
optimize power, performance, and energy.

Acknowledgements
A number of people have generously provided us with assistance.
We thank Bob Edwards at ANU for helping fabricate and calibrate
the current sensors. We thank Daniel Frampton for managing and
configuring the machines, and for his feedback. We thank Kather-
ine Coons, Pradeep Dubey, Jungwoo Ha, Laurence Hellyer, Daniel
Jiménez, and Bert Maher for their comments and suggestions. We
thank our ASPLOS shepherd, David Patterson, and John Hennessy
for their feedback and encouragement.

13 2011/2/2



References
[1] O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz. Energy-

performance tradeoffs in processor architecture and circuit design: A
marginal cost analysis. In ACM/IEEE International Symposium on
Computer Architecture, pages 26–36, 2010.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC bench-
mark suite: Characterization and architectural implications. Technical
Report TR-811-08, Princeton University, January 2008.

[3] W. L. Bircher and L. K. John. Analysis of dynamic power manage-
ment on multi-core processors. In ACM International Conference on
Supercomputing, pages 327–338, Island of Kos, Greece, 2008.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications, pages 169–190, Oct. 2006.

[5] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffman, A. M.
Khan, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
Wake up and smell the coffee: Evaluation methodologies for the 21st
century. Communications of the ACM, 51(8):83–89, Aug. 2008.

[6] M. Bohr. A 30 year retrospective on Dennard’s MOSFET scaling
paper. IEEE SSCS Newsletter, pages 11–13, Winter 2007.

[7] K. Chakraborty. Over-provisioned Multicore Systems. PhD thesis,
University of Wisconsin-Madison, 2008.

[8] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova. Eval-
uation of the Intel R© CoreTM i7 Turbo Boost feature. In IEEE Inter-
national Symposium on Workload Characterization, pages 188–197,
2009.

[9] J. S. Emer and D. W. Clark. A characterization of processor perfor-
mance in the VAX-11/780. In ACM/IEEE International Symposium
on Computer Architecture, pages 301–310, 1984.

[10] J. S. Emer and D. W. Clark. Retrospective: A characterization of
processor performance in the VAX-11/780. ACM 25 Years ISCA:
Retrospectives and Reprints 1998, pages 274–283, 1998.

[11] H. Esmaeilzadeh, S. M. Blackburn, X. Yang, and K. S. McKinley.
Power and performance of native and Java benchmarks on 130nm to
32nm process technologies. In Sixth Annual Workshop on Modeling,
Benchmarking, and Simulation, June 2010.

[12] H. Esmaeilzadeh, T. Cao, X. Yang, S. M. Blackburn, and K. S. McKin-
ley. Source materials in ACM Digital Library for: Looking back on the
language and hardware revolutions: Measured power, performance,
and scaling. In International Conference on Architectural Support for
Programming Languages and Operating Systems, Mar. 2011.

[13] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a
warehouse-sized computer. In ACM/IEEE International Symposium
on Computer Architecture, pages 13–23, San Diego, CA, 2007.

[14] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java
performance evaluation. In ACM Conference on Object–Oriented
Programming Systems, Languages, and Applications, pages 57–76,
2007.

[15] J. Ha, M. Gustafsson, S. M. Blackburn, and K. S. McKinley. Microar-
chitectural Characterization of Production JVMs and Java Workloads.
In IBM CAS Workshop, Feb. 2008.

[16] M. Hempstead, G.-Y. Wei, and D. Brooks. Navigo: An early-stage
model to study power-contrained architectures and specialization. In
Workshop on Modeling, Benchmarking, and Simulations, June 2009.

[17] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bern-
stein. Scaling, power, and the future of CMOS. In Proceedings of
International Electron Devices Meeting, pages 7–15, December 2005.

[18] Intel Corporation. Intel Hyper-Threading Technology,
2011. URL http://www.intel.com/technology/
platform-technology/hyper-threading.

[19] Intel Corporation. Intel Turbo Boost Technology in Intel Core Mi-
croarchitecture (Nehalem) Based Processors. White Paper, Nov. 2008.

[20] C. Isci and M. Martonosi. Runtime power monitoring in high-end
processors: Methodology and empirical data. In IEEE International
Symposium on Microarchitecture, pages 93–104, December 2003.

[21] ITRS Working Group. International technology roadmap for semicon-
ductors, 2011. URL http://www.itrs.net.

[22] E. Le Sueur and G. Heiser. Dynamic voltage and frequency scaling:
The laws of diminishing returns. In Workshop on Power Aware Com-
puting and Systems, Vancouver, Canada, Oct. 2010.

[23] S. H. Li. Linux kernel bug 5471, 2011. URL https://bugzilla.
kernel.org/show bug.cgi?id=5471.

[24] Y. Li, B. Lee, D. Brooks, Z. Hu, and K. Skadron. CMP design space
exploration subject to physical contraints. In International Symposium
on High Performance Computer Architecture, pages 17–28, Feb 2006.

[25] Nanoscale Integration and Modeling (NIMO) Group. Predictive tech-
nology model, 2011. URL http://ptm.asu.edu.

[26] V. Pallipadi and A. Starikovskiy. The ondemand governor: Past,
present and future. In Proceedings of Linux Symposium, volume 2,
pages 223–238, July 2006.

[27] Y. Patt. Future microprocessors: Multi-core, mega-nonsense,
and what we must do differently moving forward. Distin-
guished Lecture at UIUC, (April 2010), 2011. URL http:
//www.parallel.illinois.edu/presentations/
2010 04 30 Patt Slides.pdf.

[28] R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes. The energy
efficiency of CMP vs. SMT for multimedia workloads. In ACM
International Conference on Supercomputing, pages 196–206, Malo,
France, 2004.

[29] R. Singhal. Inside Intel next generation Nehalem microarchitecture.
Intel Developer Forum (IDF) presentation (August 2008), 2011. URL
http://software.intel.com/file/18976.

[30] Standard Performance Evaluation Corp. SPEC Benchmarks, 2010.
URL http://www.spec.org.

[31] Standard Performance Evaluation Corporation. SPEC CPU2006
benchmark descriptions. ACM SIGARCH Newsletter, Computer Ar-
chitecture News, 34(4), September 2006.

[32] The DaCapo Research Group. The DaCapo Benchmarks, beta-2006-
08, 2006. URL http://www.\-dacapo\-bench.\-org.

[33] TIOBE Software. TIOBE Programming Community Index for Jan-
uary 2011, 2011. URL http://www.tiobe.com.

[34] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. In ACM/IEEE Interna-
tional Symposium on Computer Architecture, pages 392–403, Santa
Margherita Ligure, Italy, June 1995.

14 2011/2/2


