
Addressing Dark Silicon Challenges with
Disciplined Approximate Computing

Hadi Esmaeilzadeh Adrian Sampson
Michael Ringenburg

Luis Ceze Dan Grossman
University of Washington

Department of Computer Science & Engineering
http://sampa.cs.washington.edu/

Doug Burger
Microsoft Research

dburger@microsoft.com

Abstract
With the power constraints of the dark silicon era looming, archi-
tectural changes to improve energy efficiency are critical. Disci-
plined approximate computing, in which unreliable hardware com-
ponents are safely used in error-tolerant software, is a promising
approach. We discuss programming models, architectures, and ac-
celerators for approximate computing.

1. Introduction
Moore’s Law [9], coupled with Dennard scaling [3], through de-
vice, circuit, microarchitecture, architecture, and compiler ad-
vances, has resulted in commensurate exponential performance
increases for the past three decades. With the end of Dennard
scaling—and thus slowed supply voltage scaling—future technol-
ogy generations can sustain the doubling of devices every gener-
ation (Moore’s Law) but with significantly less improvement in
energy efficiency at the device level. This device scaling trend her-
alds a divergence between energy efficiency gains and transistor
integration capacity. Based on the projection results in [1, 4, 8, 12],
this divergence will result in transistor integration capacity under-
utilization or Dark Silicon. Even the optimistic upper bound pro-
jections [4] show that conventional approaches including multicore
scaling fall significantly short of the historical performance scaling
to which the microprocessor research and industry is accustomed.
We refer to this shortfall as the Dark Silicon performance gap.

Esmaeilzadeh et al. show that fundamental performance limita-
tions stems from the processor core [4]. Architectures that move
well past the power/performance Pareto-optimal frontier of to-
day’s designs are necessary to bridge the dark silicon performance
gap and utilize transistor integration capacity. Improvements to
the core’s efficiency will have impact on long performance im-
provement and will enable technology scaling even though the
core consumes only 20% of the power budget for an entire lap-
top, smartphone, or tablet. The model introduced in [4] provides
places to focus on for innovation and shows that radical depurates
are needed. To bridge the dark silicon performance gap, designers
must develop systems that use significantly more energy-efficient
techniques than conventional approaches. In this paper, we make
a case for general-purpose approximate computing that allows ab-
stractions beyond precise digital logic (error-prone circuitry) and
relies on program semantics permitting probabilistic and approxi-
mate results.

Large and important classes of applications tolerate inaccura-
cies in their computation, e.g., vision, machine learning, image
processing, search, etc. [2, 10, 11]. While past work has explored
that property for performance and energy efficiency, they focused
on either hardware (e.g., [2]) or software (e.g., [11]) in isola-
tion and missed tremendous opportunities in co-design. We be-
lieve that hardware/software co-design for approximate comput-
ing can lead to orders of magnitude improvement in energy effi-

ciency. In a nutshell, we advocate the following approach: (1) pro-
vide the programmer with safe ways to write programs that can
tolerate small inaccuracies while guaranteeing strong program se-
mantics; (2) build architectures that can save energy by running
these disciplined approximate programs; (3) build accelerators that
can leverage approximation to execute hot code in general-purpose
programs more efficiently.

2. Disciplined Approximate Programming
In order to make approximate computing viable, we need an easy
and safe way to express approximate programs. Namely, it must
be straightforward to write reliable software that uses unreliable,
error-prone hardware. To accomplish this, the programmer must be
able to distinguish important pieces of data and computation that
retain precise semantics in the presence of approximation. This
is extremely important for programmability and argues for pro-
gramming model involvement. We have been exploring the use
of type systems to declare data that may be subject to approxi-
mate computation in a language extension called EnerJ [10]. Using
programmer-provided type annotations, the system automatically
maps approximate variables to low-power storage, uses low-power
operations, and even applies more energy-efficient algorithms pro-
vided by the programmer. In addition, EnerJ can statically guaran-
tee isolation of error-sensitive program components from approxi-
mated components. This allows a programmer to control explicitly
how the errors from approximate computation can affect the fun-
damental operation of the application. Crucially, employing static
analysis eliminates the need for dynamic checks, further improving
energy savings. We call this language-based approach “disciplined”
approximate programming. In this model, there is no formal guar-
antee on the quality of the output; however, the runtime system or
the architecture can be configured such that the approximation does
not produce catastrophically altered results.

An approximation-aware programming model also helps pro-
grammers write generalizable approximate programs. Using an ab-
stract semantics for approximation, programs written in approximation-
aware languages like EnerJ can take advantage of many different
hardware mechanisms—including both traditional architectures
and accelerators, both of which are described below.

3. Architecture Design for Approximation
In a recent paper [5], we proposed an efficient mapping of disci-
plined approximate programming onto hardware. We introduced
an ISA extension that provides approximate operations and stor-
age, which give the hardware freedom to save energy at the cost of
accuracy. We then proposed Truffle, a microarchitecture design that
efficiently supports the ISA extensions. The basis of our design is
dual-voltage operation, with a high voltage for precise operations
and a low voltage for approximate operations. The key aspect of the
microarchitecture is its dependence on the instruction stream to de-
termine when to use the low voltage. We introduce a transistor-level

1



design of a dual-voltage SRAM array and discuss the implementa-
tion of the core structures using dual-voltage primitives as well as
dynamic, instruction-based control of the voltage supply. We evalu-
ate the power savings potential of in-order and out-of-order Truffle
configurations and explore the resulting quality of service degra-
dation. We evaluate several applications and demonstrate energy
savings up to 43%. Even though our microarchitecture implemen-
tation of Truffle is based on dual-voltage functional units and stor-
age, the ISA extensions and the architecture design can leverage
other approximate technologies such as custom-designed approxi-
mate functional units as well as analog operation or storage units.
Utilizing these technologies, we can further improve the efficiency
of our architecture design which is enabled by breaking the accu-
racy abstraction while preserving safety guarantees.

The Truffle architecture enables fine-grained approximate com-
puting, where the granularity of approximate operations is a single
instruction. This approach also builds on fine-grained approxima-
tion at the storage level, where a single register or a single data
cache line can be approximate or precise state. Thus, the Truf-
fle microarchitecture is able to run a mixture of approximate and
precise instructions that dynamically choose the level of precision
they should execute. In order to execute this fine-grained mixture
of precise and approximate instructions, the Truffle microarchitec-
ture relies on the compiler to provide static guarantees on safety
of the execution. Our ISA extensions allow the compiler to stati-
cally encode the precision level of all the operations and storage
for the microarchitecture. This compiler–architecture co-design ap-
proach simplifies the microarchitecture and alleviates the overheads
of fine-grained approximate execution.

Since the lower-power units in Truffle are restricted to execution
and data storage, the overhead of processor frontend is a limiting
factor in the efficiency of this class of microarchitectures. Hence,
we are introducing approximate accelerators.

4. Approximate Accelerators
Recent research on addressing the dark silicon problem has pro-
posed configurable accelerators that adapt to efficiently execute
hot code in general-purpose programs without incurring the in-
struction control overhead of traditional execution. Recent config-
urable accelerators include BERET [7], Conservation Cores [12],
DySER [6], and QsCores [13]. Approximate accelerators have
the potential to go beyond the savings available to correctness-
preserving accelerators when imprecision is acceptable.

We are exploring approximate accelerators based on a novel
data-driven approach to mimicking code written in a traditional,
imperative programming language. Our approach transforms error-
tolerant code to use a learning mechanism—namely, a neural
network—to perform some computation that mimics the behav-
ior of some hot code in an approximation-aware application. This
program transformation transparently trains a neural network based
on empirical inputs and outputs for the “hot” target code. Then, a
hardware neural network implementation can be used at run time
to replace the original imperative code. In this sense, this program
transformation uses hardware neural network implementations as
a new class of approximate accelerators for general-purpose code.
We call these accelerators Neural Processing Units (NPUs).

Hardware neural network implementations, in both analog and
digital logic, have been thoroughly explored and can be extremely
efficient, so there is great efficiency potential in replacing expensive
computations with neural network recalls. To effectively use them
as accelerators, however, requires low latency and thus tight cou-
pling with the main core. We are investigating digital and analog
NPU implementations that integrate with the processor pipeline.

This learning-based approach to approximate acceleration also
opens the door to acceleration using existing hardware substrates:

GPUs, FPGAs, or FPAAs. By mapping the trained neural net-
work to high-performance implementations on these substrates, the
program transformation has the potential to provide speedup even
without special hardware for some applications.

To realize learning-based approximate acceleration with NPUs,
we must address a number of important research questions:

• What should the programming model look like?
• How can a neural network be automatically configured and

trained with limited intervention from the programmer?
• How should the compilation workflow transform programs to

invoke NPUs?
• What ISA extensions are necessary to support NPUs?
• How can a high-performance, low-power, configurable neural

network implementation tightly integrate with the pipeline?

Space prohibits us from treating each of these issues in detail here,
but we have explored solutions to each of these important questions
and will discuss them in the presentation.

5. Conclusions
We strongly believe that approximate computing offers many op-
portunities to improve computer systems and bridge the dark sil-
icon performance gap imposed by energy inefficiency of the de-
vice scaling. While we are actively developing new technologies
at programming level, architecture level, and circuit level, we need
language and runtime techniques to express and enforce reliability
constraints to seize this opportunity.

References
[1] S. Borkar and A. A. Chen. The future of microprocessors. Communi-

cations of the ACM, 54(5), 2011.
[2] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An architec-

tural framework for software recovery of hardware faults. In ISCA,
2010.

[3] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of ion-implanted mosfet’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, 9, October 1974.

[4] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. In ISCA,
2011.

[5] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture
support for disciplined approximate programming. In ASPLOS, 2012.

[6] V. Govindaraju, C.-H. Ho, and K. Sankaralingam. Dynamically spe-
cialized datapaths for energy efficient computing. In HPCA, 2011.

[7] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. Bundled
execution of recurring traces for energy-efcient general purpose pro-
cessing. In MICRO, 2011.

[8] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward
dark silicon in servers. IEEE Micro, 31(4):6–15, July–Aug. 2011.

[9] G. E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), April 1965.

[10] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman. EnerJ: Approximate data types for safe and general
low-power computation. In PLDI, 2011.

[11] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard.
Managing performance vs. accuracy trade-offs with loop perforation.
In FSE, 2011.

[12] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation cores:
Reducing the energy of mature computations. In ASPLOS, 2010.

[13] G. Venkatesh, J. Sampson, N. Goulding, S. K. Venkata, S. Swanson,
and M. Taylor. QsCores: Trading dark silicon for scalable energy
efficiency with quasi-specific cores. In MICRO, 2011.

2


