
Toward General-Purpose Code Acceleration with Analog Computation
Amir Yazdanbakhsh∗ Renee St. Amant§ Bradley Thwaites∗ Jongse Park∗

Hadi Esmaeilzadeh∗ Arjang Hassibi§ Luis Ceze† Doug Burger‡

∗Georgia Institute of Technology §The University of Texas at Austin †University of Washington ‡Microsoft Research

Abstract
We propose a solution—from circuit to compiler—that en-

ables general-purpose use of limited-precision, analog hard-
ware to accelerate “approximable” code—code that can tol-
erate imprecise execution. We utilize an algorithmic transfor-
mation that automatically converts approximable regions of
code from a von Neumann model to an “analog” neural model.
We outline the challenges of taking an analog approach, in-
cluding restricted-range value encoding, limited precision in
computation, circuit inaccuracies, noise, and constraints on
supported topologies. We address these limitations with a
combination of circuit techniques, a novel hardware/software
interface, neural-network training techniques, and compiler
support. Analog neural acceleration provides whole applica-
tion speedup of 3.3× and and energy savings of 12.1× with
quality loss less than 10% for all except one benchmark. These
results show that using limited-precision analog circuits for
code acceleration, through a neural approach, is both feasible
and beneficial over a range emerging applications.

1. Introduction
A growing body of work [11, 25, 6, 22, 12] has focused on
approximation as a strategy for improving performance and ef-
ficiency through approximation. Large classes of applications
can tolerate small errors in their outputs with no discernible
loss in Quality of Result (QoR). Many conventional techniques
in energy-efficient computing navigate a design space defined
by the two dimensions of performance and energy, and tradi-
tionally trade one for the other. General-purpose approximate
computing explores a third dimension—that of error.

Many interesting design alternatives become possible once
precision is relaxed. An obvious candidate is the use of analog
circuits for computation. However, computation in the analog
domain has several major challenges, even when small errors
are permissible. First, analog circuits tend to be special pur-
pose, good for only specific operations. Second, the bit widths
they can accommodate are much smaller than current floating-
point standards (i.e. 32 or 64 bits), since the ranges must be
represented by physical voltage or current levels. Another
consideration is determining where the boundaries between
digital and analog computation lie. Using individual analog
operations will not be effective due to the overhead of A/D
and D/A conversions. Finally, effective storage of temporary
analog results is challenging in current CMOS technologies.
Due to these limitations, it has not been effective to design
analog von Neumann processors that can be programmed
with conventional languages. NPUs can be a potential solu-
tion for general-purpose analog computing. Prior research

has shown that analog neural networks can effectively solve
classes of domain-specific problems, such as pattern recogni-
tion [4, 27, 28, 18]. The process of invoking a neural network
and returning a result defines a clean, coarse-grained interface
for D/A and A/D conversion. Furthermore, the compile-time
training of the network permits any analog-specific restrictions
to be hidden from the programmer. The programmer simply
specifies which region of the code can be approximated, with-
out adding any neural-network-specific information. Thus, no
additional changes to the programming model are necessary.
Figure 1 illustrates an overview of our framework.

This paper reports on our study to design an NPU with
mixed-signal components and develop a compilation work-
flow for utilizing the mixed-signal NPU for code acceleration.
The goal of this study is to investigate challenges and poten-
tial solutions of implementing NPUs with analog components,
while both bounding application error to sufficiently low lev-
els and achieving worthwhile performance or efficiency gains
for general-purpose approximable code. We found that ex-
posing the analog limitations to the compiler allowed for the
compensation of these shortcomings and produced sufficiently
accurate results. We trained networks at compile time using 8-
bit values, topologies restricted to eight inputs per neuron, plus
RPROP and CDLM [8] for training. Using these techniques to-
gether, we were able to bound error on all applications to a 10%
limit, which is comparable to prior studies using entirely digi-
tal accelerators. The average time required to compute a neural
result was 3.3× better than a previous digital implementation
with an additional energy savings of 12.1×. The performance
gains result in an average full-application-level improvement
of 3.7× and 23.3× in performance and energy-delay product,
respectively. This study shows that using limited-precision
analog circuits for code acceleration, by converting regions of
imperative code to neural networks and exposing the circuit
limitations to the compiler, is both feasible and advantageous.

2. Analog Circuits for Neural Computation
As Figure 2a illustrates, each neuron in a multi-layer percep-
tron takes in a set of inputs (xi) and performs a weighted sum
of those input values (∑i xiwi). The weights (wi) are the re-
sult of training the neural network on . After the summation
stage, which produces a linear combination of the weighted
inputs, the neuron applies a nonlinearity function, sigmoid,
to the result of summation. Figure 2b depicts a conceptual
analog circuit that performs the three necessary operations of
a neuron: (1) scaling inputs by weight (xiwi), (2) summing
the scaled inputs (∑i xiwi), and (3) applying the nonlinear-

1

A"NPU&
Circuit&Design&

Annotated&
Source&Code

Profiling&Path&for&
Training&Data&
Collec;on

Training&Data
A"NPU&

High"Level&Model&

Custom&Training&
Algorithm&for&

Limited"Precision&
Analog&Accelerator

Trained&Neural&
Network

Instrumented&
Binary

Accelerator&
Config

Design

A"NPU

CORE

Accelera;on

Code&
Genera;on

Programmer

Programming Compila;on

Figure 1: Framework for using limited-precision analog computation to accelerate code written in conventional languages.

x0

y = sigmoid(
X

(xiwi))

w0 wi wn

xi xn

X
(xiwi)

… …
I(xi) I(xn)I(x0)

R(wi) R(wn)

ADC

X
(I(xi)R(wi))

y ⇡ sigmoid(
X

(I(xi)R(wi)))

DAC DAC DAC
x0 xi xn

… …

(a) (b)

V to I V to I V to I

R(w0)

Figure 2: One neuron and its conceptual analog circuit.

ity function (sigmoid). This conceptual design first encodes
the digital inputs (xi) as analog current levels (I(xi)). Then,
these current levels pass through a set of variable resistances
whose values (R(wi)) are set proportional to the corresponding
weights (wi). The voltage level at the output of each resistance
(I(xi)R(wi)), is proportional to xiwi. These voltages are then
converted to currents that can be summed quickly according to
Kirchhoff’s current law (KCL). Analog circuits only operate
linearly within a small range of voltage and current levels,
outside of which the transistors enter saturation mode with
IV characteristics similar in shape to a non-linear sigmoid
function. Thus, at the high level, the non-linearity is natu-
rally applied to the result of summation when the final voltage
reaches the analog-to-digital converter (ADC). Compared to a
digital implementation of a neuron, which requires multipliers,
adder trees and sigmoid lookup tables, the analog implementa-
tion leverages the physical properties of the circuit elements
and is orders of magnitude more efficient. However, it operates
in limited ranges and therefore offers limited precision.

Analog-digital boundaries. The conceptual design in Fig-
ure 2b draws the analog-digital boundary at the level of an
algorithmic neuron. As we will discuss, the analog neural
accelerator will be a composition of these analog neural units
(ANUs). However, an alternative design, primarily optimizing
for efficiency, may lay out the entirety of a neural network
with only analog components, limiting the D-to-A and A-to-D
conversions to the inputs and outputs of the neural network
and not the individual neurons. The overhead of conversions
in the ANUs significantly limits the potential efficiency gains
of an analog approach toward neural computation. However,
there is a tradeoff between efficiency, reconfigurability (gener-
ality), and accuracy in analog neural hardware design. Pushing
more of the implementation into the analog domain gains ef-
ficiency at the expense of flexibility, limiting the scope of
supported network topologies and, consequently, limiting po-

tential network accuracy. The NPU approach targets code
approximation, rather than typical, simpler neural tasks, such
as recognition and prediction, and imposes higher accuracy
requirements. The main challenge is to mange this tradeoff to
achieve acceptable accuracy for code acceleration, while deliv-
ering higher performance and efficiency when analog neural
circuits are used for general-purpose code acceleration.

While a holistically analog neural hardware design with
fixed-wire connections between neurons may be efficient, it
effectively provides a fixed topology network, limiting the
scope of applications that can benefit from the neural accelera-
tor, as the optimal network topology varies with application.
Additionally, routing analog signals among neurons and the
limited capability of analog circuits for buffering signals nega-
tively impacts accuracy and makes the circuit susceptible to
noise. In order to provide additional flexibility, we set the
digital-analog boundary in conjunction with an algorithmic,
sigmoid-activated neuron. where a set of digital inputs and
weights are converted to the analog domain for efficient com-
putation, producing a digital output that can be accurately
routed to multiple consumers. We refer to this basic compu-
tation unit as an analog neural unit, or ANU. ANUs can be
composed, in various physical configurations, along with digi-
tal control and storage, to form a reconfigurable mixed-signal
NPU, or A-NPU.

Value representation and bit-width limitations. One of
the fundamental design choices for an ANU is the bit-width
of inputs and weights. Increasing the number of bits results
in an exponential increase in the ADC and DAC energy dis-
sipation and can significantly limit the benefits from analog
acceleration. Furthermore, due to the fixed range of voltage
and current levels, increasing the number of bits translates to
quantizing this fixed value range to fine granularities that prac-
tical ADCs can not handle. In addition, the fine granularity
encoding makes the analog circuit significantly more suscepti-
ble to noise, thermal, voltage, current, and process variations.
In practice, these non-ideal effects can adversely affect the
final accuracy when more bit-width is used for weights and
inputs. We design our ANUs such that the granularity of the
voltage and current levels used for information encoding is to
a large degree robust to variations and noise.

Topology restrictions. Another important design choice is
the number of inputs in the ANU. Similar to bit-width, increas-
ing the number of ANU inputs translates to encoding a larger

2

Current'
Steering'
DAC

x0sx0w0sw0

Resistor'
Ladder

Current'
Steering'
DAC

Resistor'
Ladder

Diff'
Pair

…

V (|w0x0|)

I+(w0x0)

V +
⇣X

wixi

⌘

swn
sxnwn xn

R(|w0|) R(|wn|)

I(|xn|)

V (|wnxn|)

I+(wnxn)

sy

y

Flash
ADC

y ⇡ sigmoid
⇣
V
⇣X

wixi

⌘⌘

I(|x0|)

Diff'
Pair

I�(w0x0)

I�(wnxn)

V �
⇣X

wixi

⌘
Diff'
Amp

+

-

+

;

Figure 3: A single analog neuron (ANU).

value range in a bounded voltage and current range, which, as
discussed, becomes impractical. The larger the number of in-
puts, the larger the number of multiply and add operations that
can be done in parallel in the analog domain, increasing effi-
ciency. However, due to the bounded range of voltage and cur-
rents, increasing the number of inputs requires decreasing the
number of bits for inputs and weights. Through circuit-level
simulations, we empirically found that limiting the number of
inputs to eight with 8-bit inputs and weights strikes a balance
between accuracy and efficiency. However, this unique ANU
limitation restricts the topology of the neural network that
can run on the analog accelerator. Our customized training
algorithm and compilation workflow takes into account this
topology limitation and produces neural networks that can be
computed on our mixed-signal accelerator.

Non-ideal sigmoid. The saturation behavior of the analog
circuit that leads to sigmoid-like behavior after the summation
stage represents an approximation of the ideal sigmoid. We
measure this behavior at the circuit level and expose it to the
compiler and the training algorithm.

3. Mixed-Signal Neural Accelerator (A-NPU)
Circuit design for ANUs. Figure 3 illustrates the design
of a single analog neuron (ANU). As mentioned, the ANU
performs the computation of a single neuron, which is y ≈
sigmoid(∑i wixi). We place the analog-digital boundary at
the ANU level, with computation in the analog domain and
storage in the digital domain. Digital input and weight values
are represented in sign-magnitude form. In the figure, swi

and sxi represent the sign bits and wi and xi represent the
magnitude. Digital input values are converted to the analog
domain through current-steering DACs that translate digital
values to analog currents. Current-steering DACs are used for
their speed and simplicity. In Figure 3, I(|xi|) is the analog
current that represents the magnitude of the input value, xi.
Digital weight values control resistor string ladders that create
a variable resistance depending on the magnitude of each
weight (R(|wi|)) . We use a standard resistor ladder thats
consists of a set of resistors connected to a tree-structured set

of switches. The digital weight bits (wis) control the switches,
adjusting the effective resistance, R(|wi|), seen by the input
current (I(|xi|)). These variable resistances scale the input
currents by the digital weight values, effectively multiplying
each input magnitude by its corresponding weight magnitude.
The output of the resistor ladder is a voltage: V (|wixi|) =
I(|xi|)×R(|wi|). The resistor network requires 2m resistors
and approximately 2m+1 switches, where m is the number of
digital weight bits. This resistor ladder design has been shown
to work well for m ≤ 10. Our circuit simulations show that
only minimally sized switches are necessary.

V (|wixi|) as well as the XOR of the weight and input sign
bits feed to a differential pair that converts voltage values
to two differential current (I+(wixi), I−(wixi)) that capture
the sign of the weighted input. These differential currents
are proportional to the voltage applied to the differential pair,
V (|wixi|). If the voltage difference between the two gates is
kept small, the current-voltage relationship is linear, producing
I+(wixi) =

Ibias
2 +∆I and I−(wixi) =

Ibias
2 −∆I. Resistor ladder

values are chosen such that the gate voltage remains in the
range that produces linear outputs, and consequently a more
accurate final result. Based on the sign of the computation, a
switch steers either the current associated with a positive value
or the current associated with a negative value to a single wire
to be efficiently summed according to Kirchhoff’s current law.
The alternate current is steered to a second wire, retaining
differential operation at later design stages. Differential op-
eration combats environmental noise and increases gain, the
later being particularly important for mitigating the impact of
analog range challenges at later stages.

Resistors convert the resulting pair of differential currents
to voltages, V+(∑i wixi) and V−(∑i wixi), that represent the
weighted sum of the inputs to the ANU. These voltages are
used as input to an additional amplification stage (implemented
as a current-mode differential amplifier with diode-connected
load). The goal of this amplification stage is to significantly
magnify the input voltage range of interest that maps to the
linear output region of the desired sigmoid function. Our
experiments show that neural networks are sensitive to the
steepness of this non-linear function, losing accuracy with
shallower, non-linear activation functions. This fact is rele-
vant for an analog implementation because steeper functions
increase range pressure in the analog domain, as a small range
of interest must be mapped to a much larger output range in
accordance with ADC input range requirements for accurate
conversion. We magnify this range of interest, choosing circuit
parameters that give the required gain, but also allowing for
saturation with inputs outside of this range.

The amplified voltage is used as input to an analog-to-digital
converter that converts the voltage to a digital value. We chose
a flash ADC design (named for its speed), which consists of a
set of reference voltages and comparators [1, 17]. The ADC
requires 2n comparators, where n is the number of digital out-
put bits. Flash ADC designs are capable of converting 8 bits

3

Column'Selector

8"Wide
Analog-
Neuron

W
ei
gh
t'B

uff
er 8"Wide

Analog-
Neuron

W
ei
gh
t'B

uff
er 8"Wide

Analog-
Neuron

W
ei
gh
t'B

uff
er 8"Wide

Analog-
Neuron

W
ei
gh
t'B

uff
er

Row'Selector

Output'FIFO

Config'FIFO
Input'FIFO

…

Figure 4: Mixed-signal neural accelerator, A-NPU. Only four of
the ANUs are shown. Each ANU processes eight 8-bit inputs.

at frequency on the order of one GHz. We require 2–3 mV
between ADC quantization levels for accurate operation and
noise tolerance. Typically, ADC reference voltages increase
linearly; however, we use a non-linearly increasing set of ref-
erence voltages to capture the behavior of a sigmoid function
which also improves the accuracy of the analog sigmoid.

Reconfigurable mixed-signal A-NPU. We design a recon-
figurable mixed-signal A-NPU that can perform the computa-
tion of a wide variety of neural topologies since each requires
a different topology. Figure 4 illustrates the A-NPU design
with some details omitted for clarity. The figure shows four
ANUs while the actual design has eight. The A-NPU is a
time-multiplexed architecture where the algorithmic neurons
are mapped to the ANUs based on a static scheduling algo-
rithm, which is loaded to the A-NPU before invocation. The
multi-layer perceptron consists of layers of neurons, where
the inputs of each layer are the outputs of the previous layer.
The ANU starts from the input layer and performs the compu-
tations of the neurons layer by layer. The Input Buffer always
contains the inputs to the neurons, either coming from the
processor or from the previous layer computation. The Output
Buffer, which is a single entry buffer, collects the outputs of the
ANUs. When all of its columns are computed, the results are
pushed back to the Input Buffer to enable calculation of the next
layer. The Row Selector determines which entry of the input
buffer will be fed to the ANUs. The output of the ANUs will
be written to a single-entry output buffer. The Column Selector
determines which column of the output buffer will be written
by the ANUs. These selectors are FIFO buffers whose values
are part of the preloaded A-NPU configuration. All the buffers
are digital SRAM structures.

Each ANU has eight inputs. As depicted in Figure 4, each
A-NPU is augmented with a dedicated weight buffer that stores
the 8-bit weights. The weight buffers simultaneously feed the
weights to the ANUs. The weights and the order in which
they are fed to the ANUs are part of the A-NPU configuration.
The Input Buffer and Weight Buffers synchronously provide the
inputs and weights for the ANUs based on a pre-loaded order.

A-NPU configuration. During code generation, the com-
piler produces an A-NPU configuration that constitutes the
weights and the schedule. The static A-NPU scheduling algo-

rithm first assigns an order to the neurons. This determines
the order in which the neurons will be computed on the ANUs.
Then, the scheduler takes the following steps for each layer
of the neural network: (1) Assign each neuron to one of the
ANUs. (2) Assign an order to neurons. (3) Assign an order
to the weights. (4) Generate the order for inputs to be fed to
the ANUs. (5) Generate the order in which the outputs will
be written to the Output Buffer. The scheduler also assigns a
unique order for the inputs and outputs of the neural network
in which the processor will communicate data with the A-NPU

4. Compilation for Analog Acceleration
As Figure 1 illustrates, the compilation for A-NPU execution
consists of three stages: (1) profile-driven data collection, (2)
training for a limited-precision A-NPU, and (3) code genera-
tion for hybrid analog-digital execution. In the profile-driven
data collection stage, the compiler instruments the application
to collect the inputs and outputs of approximable functions.
The compiler then runs the application with representative
inputs and collects the inputs and their corresponding outputs.
These input-output pairs constitute the training data. Section 3
briefly discussed ISA extensions and code generation. While
compilation stages (1) and (3) are similar to the techniques pre-
sented for a digital implementation [12], the training phase is
unique to an analog approach, accounting for analog-imposed,
topology restrictions and adjusting weight selection to account
for limited-precision computation.

Hardware/software interface for exposing analog circuits
to the compiler. As we discussed in Section 2, we ex-
pose the following analog circuit restrictions to the compiler
through a hardware/software interface that captures the fol-
lowing circuit characteristics: (1) input bit-width limitations,
(2) weight bit-width limitations, (3) limited number of inputs
to each analog neuron (topology restriction), and (4) the non-
ideal shape of the analog sigmoid. The compiler internally
constructs a high-level model of the circuit based on these
limitations and uses this model during the neural topology
search and training with the goal of limiting the impact of
inaccuracies due to an analog implementation.

Training for limited bit widths and analog computation.
Traditional training algorithms for multi-layered perceptron
neural networks use a gradient descent approach to minimize
the average network error, over a set of training input-output
pairs, by backpropagating the output error through the net-
work and iteratively adjusting the weight values to minimize
that error. Traditional training techniques, however, that do
not consider limited-precision inputs, weights, and outputs
perform poorly when these values are saturated to adhere to
the bit-width requirements that are feasible for an implemen-
tation in the analog domain. Simply limiting weight values
during training is also detrimental to achieving quality outputs
because the algorithm does not have sufficient precision to
converge to a quality solution.

4

Table 1: The evaluated benchmarks, characterization of each offloaded function, training data, and the trained neural network.

Benchmark*Name Descrip0on Type
#*of*

Func0on*
Calls

#*of*
Loops

#*of*Ifs/
elses

#*of*
x86@64*

Instruc0on
s

Evalua0on*Input*
Set Training*Input*Set Neural*Network*

Topology

Fully*
Digital*NN*

MSE

Analog*NN*
MSE*(8@bit)

Applica0on*Error*
Metric

Fully*
Digital*
Error

Analog*
Error

blackscholes
Mathema'cal*
model*of*a*
financial*market*

Financial*
Analysis 5 0 5 309

4096*Data*Point*
from*PARSEC

16384*Data*Point*
from*PARSEC 6*E>*8*E>*8E>*1 0.000011 0.00228 Avg.*Rela've*Error 6.02% 10.2%

M RadixE2*CooleyE
Tukey*fast*fourier

Signal*
Processing 2 0 0 34

2048*Random*
Floa'ng*Point*
Numbers

32768*Random*
Floa'ng*Point*
Numbers

1*E>*4*E>*4*E>*2 0.00002 0.00194 Avg.*Rela've*Error 2.75% 4.1%

inversek2j Inverse*kinema'cs*
for*2Ejoint*arm Robo'cs 4 0 0 100

10000*(x,*y)*
Random*
Coordinates

10000*(x,*y)*
Random*
Coordinates

2*E>*8*E>*2 0.000341 0.00467 Avg.*Rela've*Error 6.2% 9.4%

jmeint
Triangle*
intersec'on*
detec'on

3D*Gaming 32 0 23 1,079

10000*Random*
Pairs*of*3D*
Triangle*
Coordinates

10000*Random*
Pairs*of*3D*
Triangle*
Coordinate

18*E>*32*E>*8*E>*2 0.05235 0.06729 Miss*Rate 17.68% 19.7%

jpeg JPEG*encoding Compression 3 4 0 1,257 220x200EPixel*
Color*Image

Three*512x512E
Pixel*Color*Images 64*E>*16*E>*8*E>*64 0.0000156 0.0000325 Image*Diff 5.48% 8.4%

kmeans KEmeans*clustering Machine*
Learning 1 0 0 26

220x200EPixel*
Color*Image

50000*Pairs*of*
Random*(r,*g,*b)*
Values

6*E>*8*E>*4*E>*1 0.00752 0.009589 Image*Diff 3.21% 7.3%

sobel Sobel*edge*
detector

Image*
Processing 3 2 1 88 220x200EPixel*

Color*Image
One*512x512E
Pixel*Color*Image 9*E>*8*E>*1 0.000782 0.00405 Image*Diff 3.89% 5.2%

To incorporate bit-width limitations into the training al-
gorithm, we use a customized continuous-discrete learning
method (CDLM) [8]. This approach takes advantage of the
availability of full-precision computation at training time and
then adjusts slightly to optimize the network for errors due
to limited-precision values. In an initial phase, CDLM first
trains a fully-precise network according to a standard training
algorithm, such as backpropagation [24]. In a second phase,
it discretizes the input, weight, and output values according
the the exposed analog specification. The algorithm calcu-
lates the new error and backpropagates that error through the
fully-precise network using full-precision computation and
updates the weight values according to the algorithm also used
in stage 1. This process repeats, backpropagating the ’dis-
crete’ errors through a precise network. The original CDLM
training algorithm was developed to mitigate the impact of
limited-precision weights. We customize this algorithm by
incorporating the input bit-width limitation and the output
bit-width limitation in addition to limited weight values. Ad-
ditionally, this training scheme is advantageous for an analog
implementation because it is general enough to also make up
for errors that arise due to an analog implementation, such as a
non-ideal sigmoid function and any other analog non-ideality
that behaves consistently.

Training with topology restrictions. Conventional multi-
layered perceptron networks are fully connected, i.e. the out-
put of each neuron in one layer is routed to the input of each
neuron in the following layer. However, analog range limita-
tions restrict the number of inputs that can be computed in a
neuron (eight in our design). Consequently, network connec-
tions must be limited, and in many cases, the network can not
be fully connected.

We impose the circuit restriction on the connectivity be-
tween the neurons during the topology search and we use a
simple algorithm guided by the mean-squared error of the
network to determine the best topology given the exposed
restriction. The error evaluation uses a typical cross-validation

approach: the compiler partitions the data collected during
profiling into a training set, 70% of the data, and a test set,
the remaining 30%. The topology search algorithm trains
many different neural-network topologies using the training
set and chooses the one with the highest accuracy on the test
set and the lowest latency on the A-NPU hardware (prioritiz-
ing accuracy). The space of possible topologies is large, so we
restrict the search to neural networks with at most two hidden
layers. We also limit the number of neurons per hidden layer
to powers of two up to 32.

To further improve accuracy, and compensate for topology-
restricted networks, we utilize a Resilient Back Propagation
(RPROP) [16] training algorithm as the base training algorithm
in our CDLM framework. During training, instead of updating
the weight values based on the backpropagated error (as in
conventional backpropagation [24]), the RPROP algorithm
increases or decreases the weight values by a predefined value
based on the sign of the error. Our investigation showed that
RPROP significantly outperforms conventional backpropaga-
tion for the selected network topologies, requiring only half of
the number of training epochs as backpropagation to converge
on a quality solution. The main advantage of the application of
RPROP training to an analog approach to neural computing is
its robustness to the sigmoid function and topology restrictions
imposed by the analog design. Our RPROP-based, customized
CDLM training phase requires 5000 training epochs, with the
analog-based CDLM phase adding roughly 10% to the training
time of the baseline training algorithm.

5. Evaluations
Cycle-accurate simulation and energy modeling. We use
the MARSSx86 x86-64 cycle-accurate simulator [23] to model
the performance of the processor. The processor is modeled
after a single-core Intel Nehalem to evaluate the performance
benefits of A-NPU acceleration over an aggressive out-of-
order architecture. We extended the simulator to include ISA-
level support for A-NPU queue and dequeue instructions. We

5

Table 2: Error with a floating point D-NPU, A-NPU with ideal
sigmoid, and A-NPU with non-ideal sigmoid.

Ap
pl

ic
at

io
n

En
er

gy
 R

ed
uc

tio
n

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Speedup A-NPU over D-ANPU

Application Topology Speedup (1.1336
GHz)

Speedup (1.7 GHz)

blackscholes 6 -> 8 -> 8 -> 1 2.50 3.75

fft 1 -> 4 -> 4 -> 2 1.89 2.83

inversek2j 2 -> 8 -> 2 2.42 3.63

jmeint 18 -> 32 -> 8 -> 2 3.92 5.88

jpeg 64 -> 16 -> 8 -> 64 15.21 22.81

kmeans 6 -> 8 -> 4 -> 1 2.44 3.67

sobel 9 -> 8 -> 1 2.75 4.13

swaptions 1 -> 16 -> 8 -> 1 2.08 3.13

geomean 3.14 4.71

Energy (nJ)

Application Topology A-NPU - 1/3 Digital
Frequency
(Manual)

A-NPU - 1/2 Digital
Frequency
(Manual)

D-ANPU (Hadi) Improvement

blackscholes 6 -> 8 -> 8 -> 1 0.86 0.96 8.15 9.53

fft 1 -> 4 -> 4 -> 2 0.54 0.61 18.21 33.85

inversek2j 2 -> 8 -> 2 0.51 0.58 2.04 4.00

jmeint 18 -> 32 -> 8 -> 2 1.99 2.21 2.33 1.17

jpeg 64 -> 16 -> 8 -> 64 1.36 1.51 56.26 41.47

kmeans 6 -> 8 -> 4 -> 1 0.67 0.76 111.54 165.46

sobel 9 -> 8 -> 1 0.46 0.53 5.77 12.41

swaptions 1 -> 16 -> 8 -> 1 1.22 1.36 5.49 4.51

geomean 0.79 0.89 11.43 14.40

Application Speedup

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1 14.1441013944802 24.5221729784241 48.0035326510468 0.294647093939904 0.510841007404262 0.489158992595738

fft 1 -> 4 -> 4 -> 2 1.12709929506364 1.32327013458615 1.64546022960568 0.68497510592142 0.804194541306698 0.195805458693302

inversek2j 2 -> 8 -> 2 7.98161179269307 10.9938617211157 14.9861613789597 0.53259881505741 0.733600916412848 0.266399083587152

jmeint 18 -> 32 -> 8 -> 2 2.39085372136084 6.26190545947988 14.0755862116774 0.169858198827793 0.444877063399665 0.555122936600335

jpeg 64 -> 16 -> 8 -> 64 1.5617504494923 1.87946485929561 1.90676591975013 0.819057249406344 0.985682007334125 0.014317992665875

kmeans 6 -> 8 -> 4 -> 1 0.590012411780286 0.844832278645737 1.20518169214864 0.489563039020608 0.700999927354972 0.299000072645028

sobel 9 -> 8 -> 1 2.4864550898745 3.10723166292606 3.62429006473114 0.686053004992842 0.857335259438336 0.142664740561664

geomean 2.5478647166383 3.7797513074705 5.42766338726694 0.469422021014693 0.696386462789426 0.189114065410968

Dynamic Insts

Application Topology CPU Other Instructions NPU Queue
Instructions

Less Insts

blackscholes 6 -> 8 -> 8 -> 1 1.0 0.02 0.003 0.972

fft 1 -> 4 -> 4 -> 2 1.0 0.31 0.012 0.674

inversek2j 2 -> 8 -> 2 1.0 0.03 0.008 0.959

jmeint 18 -> 32 -> 8 -> 2 1.0 0.03 0.018 0.951

jpeg 64 -> 16 -> 8 -> 64 1.0 0.43 0.005 0.563

kmeans 6 -> 8 -> 4 -> 1 1.0 0.66 0.048 0.297

sobel 9 -> 8 -> 1 1.0 0.41 0.023 0.571

swaptions 1 -> 16 -> 8 -> 1

geomean

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Sp
ee

du
p

0

0.2

0.4

0.6

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

0.44

0.51
0.470.49

0.17

0.53

0.29

Core + D-NPU
Core + A-NPU

N
or

m
al

iz
ed

 #
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

0.00

0.25

0.50

0.75

1.00

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other Instructions
NPU Queue Instructions

8-bit D-NPU vs. A-NPU

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

swaptions 1 -> 16 -> 8 -> 1 50 10.30 8 1.22 2.08 3.13 8.45 7.58

geomean 59.90 9.71 6.35 0.84 3.33 4.71 12.14 10.32

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Energy Saving
Speedup

En
er

gy
 Im

pr
ov

em
en

t

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

10.3

7.6

10.5

7.6

73.825.5

4.1

3.3

8.5

12.14

8.45

11.81

8.56

82.2128.28

4.57

3.79

9.53

1/3 Digital Frequency
1/2 Digital Frequency

Analog Sigmoid

Application Topology Fully Precise
Digital Sigmoid

Fully Precise
Digital Sigmoid

Analog Sigmoid Analog Sigmoid

blackscholes 6 -> 8 -> 8 -> 1 0.0839 8.39 10.21 0.0182

fft 1 -> 4 -> 4 -> 2 0.0303 3.03 4.13 0.011

inversek2j 2 -> 8 -> 2 0.0813 8.13 9.42 0.0129

jmeint 18 -> 32 -> 8 -> 2 0.1841 18.41 19.67 0.0126

jpeg 64 -> 16 -> 8 -> 64 0.0662 6.62 8.35 0.0173

kmeans 6 -> 8 -> 4 -> 1 0.06 6.10 7.28 0.0118

sobel 9 -> 8 -> 1 0.0428 4.28 5.21 0.0093

swaptions 1 -> 16 -> 8 -> 1 0.0261 2.61 3.34 0.0073

geomean 0.06 6.02 7.32 0.01

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or

0%

2%

4%

6%

8%

10%

12%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Fully Precise Digital Sigmoid
Analog Sigmoid

Table 1

Maximum number of Incoming Synapses to each
Neuron

4 8 16

Application
Level Error
(Image Diff)

14.32% 6.62% 5.76%

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or
 (I

m
ag

e
D

iff
)

0%

3%

6%

9%

12%

15%

Maximum number of Incoming Synapses to each Neuron
4 8 16

Ap
pl

ic
at

io
n

Sp
ee

du
p

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Application Level Error

Benchmarks Fully Precise
Digital Sigmoid

Analog
Sigmoid

blackscholes 8.39% 10.21%

fft 3.03% 4.13%

inversek2j 8.13% 9.42%

jmeint 18.41% 19.67%

jpeg 6.62% 8.35%

kmeans 6.1% 7.28%

sobel 4.28% 5.21%

swaptions 2.61% 3.34%

geomean 6.02% 7.32%

blackscholes fft inversek2j jmeint jpeg kmeans sobel

Floating Point
D-NPU

6.0% 2.7% 6.2% 17.6% 5.4% 3.2% 3.8%

A-NPU + Ideal
Sigmoid

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3%

A-NPU 10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2%

Benchmarks blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other
Instructions

2.4% 31.4% 3.3% 3.1% 43.3% 65.5% 40.5%

NPU Queue
Instructions

0.3% 1.2% 0.8% 1.8% 0.5% 4.8% 2.3%

42
.5

51
.2

52
.5

1.
6 1.
7

1.
7

25
.8

30
.0

31
.4

7.
3

17
.8

18
.8

2.
2 2.
3

2.
3

1.
1 1.
3

1.
3

2.
7 2.
8

2.
8

14
.1

24
.5

48
.0

1.
1 1.
3 1.

6

7.
9

10
.9

14
.9

2.
3

6.
2

14
.0

1.
5 1.

8
1.

9

0.
5 0.
8 1.

2

2.
4 3.

1 3.
6

9.
5

2.
5

3.
7

1.
8

4.
5

2.
4

28
.2

3.
9

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Percentage
instructions
subsumed

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3% 2.6% 6.0%

Analog
Sigmoid

10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2% 3.3% 7.3%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions
Percentage
Instructions
Subsumed

97.2% 67.4% 95.9% 95.1% 56.3% 29.7% 57.1%

82
.2

15
.2

8.
5

2.
4

11
.8

2.
7

8.
4

2.
0

12
.1

3.
3

2.
5

3.
7

5.
4

5.
1

6.
3 6.
5

Application Energy Reduction

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.787719817984527 0.977559461493782 0.011817544342672

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Speedup
Energy Saving

8-bit D-NPU vs. A-NPU-1

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

geomean 61.47 9.63 6.15 0.79 3.33 5.00 12.14 10.79

2.
5

9.
5

3.
7

1.
8

2.
4

4.
5

28
.2

3.
9

82
.2

15
.2

8.
5

2.
4 2.

7
11

.8

12
.1

3.
3

Application Speedup-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1

fft 1 -> 4 -> 4 -> 2

inversek2j 2 -> 8 -> 2

jmeint 18 -> 32 -> 8 -> 2

jpeg 64 -> 16 -> 8 -> 64

kmeans 6 -> 8 -> 4 -> 1

sobel 9 -> 8 -> 1

swaptions 1 -> 16 -> 8 -> 1

geomean

Application Energy Reduction-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

swaptions 1 -> 16 -> 8 -> 1

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.011817544342672

also augmented MARSSx86 with a cycle-accurate simulator
for our A-NPU design and an 8-bit, fixed-point D-NPU with
eight processing engines (PEs) as described in [12]. We use
GCC v4.7.3 with -o3 to enable compiler optimization. The
baseline in our experiments is the benchmark run solely on the
processor without neural transformation. We use McPAT [19]
for processor energy estimations. We model the energy of an
8-bit, fixed-point D-NPU using results from McPAT, CACTI
6.5 [21], and [13] to estimate its energy. Both the D-NPU and
the processor operate at 3.4GHz, while the A-NPU is clocked
at one third of the digital clock frequency, 1.1GHz at 1.2 V, to
achieve acceptable accuracy1.

Circuit design for ANU. We implemented the 8-bit, 8-input
ANU in the Cadence Analog Design Environment using pre-
dictive technology models at 45 nm [5]. We ran detailed
Spectre spice simulations to understand circuit behavior and
measure ANU energy consumption. We used CACTI to esti-
mate energy of the A-NPU buffers.

Benchmarks. We use the benchmarks in [12] and add one
more, blackscholes.

Whole application speedup and energy savings. Figure 5
shows the whole application speedup and energy savings when
the processor is augmented with an 8-bit, 8-PE D-NPU, our
8-ANU A-NPU, and an ideal NPU, which takes zero cycles
and consumes zero energy. Figure 5c shows the percentage of
dynamic instructions subsumed by the neural transformation
of the candidate code. The results show, following the Am-
dahl’s Law, that the larger the number of dynamic instructions
subsumed, the larger the benefits from neural acceleration.
Geometric mean speedup and energy savings with an A-NPU
is 3.7× and 6.3× respectively, which is 48% and 24% better
than an 8-bit, 8-PE NPU. Among the benchmarks, kmeans
sees slow down with D-NPU and A-NPU-based acceleration.
All benchmarks benefit in terms of energy. The speedup with
A-NPU acceleration ranges from 0.8× to 24.5×. The energy
savings range from 1.1× to 51.2×.

Application error. Table 2 shows the application-level er-
rors with a floating point D-NPU, A-NPU with ideal sigmoid

1Processor: Fetch/Issue Width: 4/5, INT ALUs/FPUs: 6/6, Load/Store
FUs: 1/1, ROB Entries: 128, Issue Queue Entries: 36, INT/FP Physical
Registers: 256/256, Branch Predictor: Tournament 48 KB, BTB Sets/Ways:
1024/4, RAS Entries: 64, Load/Store Queue Entries: 48/48, Dependence
Predictor: 4096-entry Bloom Filter, ITLB/DTLB Entries: 128/256 L1: 32
KB Instruction, 32 KB Data, Line Width: 64 bytes, 8-Way, Latency: 3 cycles
L2: 256 KB, Line Width: 64 bytes, 8-Way, Latency: 6 cycles L3: 2 MB,
Line Width 64 bytes, 16-Way, Latency: 27 cycles Memory Latency: 50 ns

Ap
pl

ic
at

io
n

En
er

gy
 R

ed
uc

tio
n

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Speedup A-NPU over D-ANPU

Application Topology Speedup (1.1336
GHz)

Speedup (1.7 GHz)

blackscholes 6 -> 8 -> 8 -> 1 2.50 3.75

fft 1 -> 4 -> 4 -> 2 1.89 2.83

inversek2j 2 -> 8 -> 2 2.42 3.63

jmeint 18 -> 32 -> 8 -> 2 3.92 5.88

jpeg 64 -> 16 -> 8 -> 64 15.21 22.81

kmeans 6 -> 8 -> 4 -> 1 2.44 3.67

sobel 9 -> 8 -> 1 2.75 4.13

swaptions 1 -> 16 -> 8 -> 1 2.08 3.13

geomean 3.14 4.71

Energy (nJ)

Application Topology A-NPU - 1/3 Digital
Frequency
(Manual)

A-NPU - 1/2 Digital
Frequency
(Manual)

D-ANPU (Hadi) Improvement

blackscholes 6 -> 8 -> 8 -> 1 0.86 0.96 8.15 9.53

fft 1 -> 4 -> 4 -> 2 0.54 0.61 18.21 33.85

inversek2j 2 -> 8 -> 2 0.51 0.58 2.04 4.00

jmeint 18 -> 32 -> 8 -> 2 1.99 2.21 2.33 1.17

jpeg 64 -> 16 -> 8 -> 64 1.36 1.51 56.26 41.47

kmeans 6 -> 8 -> 4 -> 1 0.67 0.76 111.54 165.46

sobel 9 -> 8 -> 1 0.46 0.53 5.77 12.41

swaptions 1 -> 16 -> 8 -> 1 1.22 1.36 5.49 4.51

geomean 0.79 0.89 11.43 14.40

Application Speedup

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1 14.1441013944802 24.5221729784241 48.0035326510468 0.294647093939904 0.510841007404262 0.489158992595738

fft 1 -> 4 -> 4 -> 2 1.12709929506364 1.32327013458615 1.64546022960568 0.68497510592142 0.804194541306698 0.195805458693302

inversek2j 2 -> 8 -> 2 7.98161179269307 10.9938617211157 14.9861613789597 0.53259881505741 0.733600916412848 0.266399083587152

jmeint 18 -> 32 -> 8 -> 2 2.39085372136084 6.26190545947988 14.0755862116774 0.169858198827793 0.444877063399665 0.555122936600335

jpeg 64 -> 16 -> 8 -> 64 1.5617504494923 1.87946485929561 1.90676591975013 0.819057249406344 0.985682007334125 0.014317992665875

kmeans 6 -> 8 -> 4 -> 1 0.590012411780286 0.844832278645737 1.20518169214864 0.489563039020608 0.700999927354972 0.299000072645028

sobel 9 -> 8 -> 1 2.4864550898745 3.10723166292606 3.62429006473114 0.686053004992842 0.857335259438336 0.142664740561664

geomean 2.5478647166383 3.7797513074705 5.42766338726694 0.469422021014693 0.696386462789426 0.189114065410968

Dynamic Insts

Application Topology CPU Other Instructions NPU Queue
Instructions

Less Insts

blackscholes 6 -> 8 -> 8 -> 1 1.0 0.02 0.003 0.972

fft 1 -> 4 -> 4 -> 2 1.0 0.31 0.012 0.674

inversek2j 2 -> 8 -> 2 1.0 0.03 0.008 0.959

jmeint 18 -> 32 -> 8 -> 2 1.0 0.03 0.018 0.951

jpeg 64 -> 16 -> 8 -> 64 1.0 0.43 0.005 0.563

kmeans 6 -> 8 -> 4 -> 1 1.0 0.66 0.048 0.297

sobel 9 -> 8 -> 1 1.0 0.41 0.023 0.571

swaptions 1 -> 16 -> 8 -> 1

geomean

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Sp
ee

du
p

0

0.2

0.4

0.6

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

0.44

0.51
0.470.49

0.17

0.53

0.29

Core + D-NPU
Core + A-NPU

N
or

m
al

iz
ed

 #
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

0.00

0.25

0.50

0.75

1.00

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other Instructions
NPU Queue Instructions

8-bit D-NPU vs. A-NPU

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

swaptions 1 -> 16 -> 8 -> 1 50 10.30 8 1.22 2.08 3.13 8.45 7.58

geomean 59.90 9.71 6.35 0.84 3.33 4.71 12.14 10.32

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Energy Saving
Speedup

En
er

gy
 Im

pr
ov

em
en

t

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

10.3

7.6

10.5

7.6

73.825.5

4.1

3.3

8.5

12.14

8.45

11.81

8.56

82.2128.28

4.57

3.79

9.53

1/3 Digital Frequency
1/2 Digital Frequency

Analog Sigmoid

Application Topology Fully Precise
Digital Sigmoid

Fully Precise
Digital Sigmoid

Analog Sigmoid Analog Sigmoid

blackscholes 6 -> 8 -> 8 -> 1 0.0839 8.39 10.21 0.0182

fft 1 -> 4 -> 4 -> 2 0.0303 3.03 4.13 0.011

inversek2j 2 -> 8 -> 2 0.0813 8.13 9.42 0.0129

jmeint 18 -> 32 -> 8 -> 2 0.1841 18.41 19.67 0.0126

jpeg 64 -> 16 -> 8 -> 64 0.0662 6.62 8.35 0.0173

kmeans 6 -> 8 -> 4 -> 1 0.06 6.10 7.28 0.0118

sobel 9 -> 8 -> 1 0.0428 4.28 5.21 0.0093

swaptions 1 -> 16 -> 8 -> 1 0.0261 2.61 3.34 0.0073

geomean 0.06 6.02 7.32 0.01

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or

0%

2%

4%

6%

8%

10%

12%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Fully Precise Digital Sigmoid
Analog Sigmoid

Table 1

Maximum number of Incoming Synapses to each
Neuron

4 8 16

Application
Level Error
(Image Diff)

14.32% 6.62% 5.76%

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or
 (I

m
ag

e
D

iff
)

0%

3%

6%

9%

12%

15%

Maximum number of Incoming Synapses to each Neuron
4 8 16

Ap
pl

ic
at

io
n

Sp
ee

du
p

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Application Level Error

Benchmarks Fully Precise
Digital Sigmoid

Analog
Sigmoid

blackscholes 8.39% 10.21%

fft 3.03% 4.13%

inversek2j 8.13% 9.42%

jmeint 18.41% 19.67%

jpeg 6.62% 8.35%

kmeans 6.1% 7.28%

sobel 4.28% 5.21%

swaptions 2.61% 3.34%

geomean 6.02% 7.32%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions

Floating Point
D-NPU

6.0% 2.7% 6.2% 17.6% 5.4% 3.2% 3.8% 2.3%

A-NPU + Ideal
Sigmoid

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3% 2.6%

A-NPU 10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2% 3.3%

Benchmarks blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other
Instructions

2.4% 31.4% 3.3% 3.1% 43.3% 65.5% 40.5%

NPU Queue
Instructions

0.3% 1.2% 0.8% 1.8% 0.5% 4.8% 2.3%

42
.5

51
.2

52
.5

1.
6 1.
7

1.
7

25
.8

30
.0

31
.4

7.
3

17
.8

18
.8

2.
2 2.
3

2.
3

1.
1 1.
3

1.
3

2.
7 2.
8

2.
8

14
.1

24
.5

48
.0

1.
1 1.
3 1.

6

7.
9

10
.9

14
.9

2.
3

6.
2

14
.0

1.
5 1.

8
1.

9

0.
5 0.
8 1.

2

2.
4 3.

1 3.
6

9.
5

2.
5

3.
7

1.
8

4.
5

2.
4

28
.2

3.
9

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Percentage
instructions
subsumed

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3% 2.6% 6.0%

Analog
Sigmoid

10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2% 3.3% 7.3%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions
Percentage
Instructions
Subsumed

97.2% 67.4% 95.9% 95.1% 56.3% 29.7% 57.1%

82
.2

15
.2

8.
5

2.
4

11
.8

2.
7

8.
4

2.
0

12
.1

3.
3

2.
5

3.
7

5.
4

5.
1

6.
3 6.
5

Application Energy Reduction

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.787719817984527 0.977559461493782 0.011817544342672

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Speedup
Energy Saving

8-bit D-NPU vs. A-NPU-1

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

geomean 61.47 9.63 6.15 0.79 3.33 5.00 12.14 10.79

2.
5

9.
5

3.
7

1.
8

2.
4

4.
5

28
.2

3.
9

82
.2

15
.2

8.
5

2.
4 2.

7
11

.8

12
.1

3.
3

Application Speedup-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1

fft 1 -> 4 -> 4 -> 2

inversek2j 2 -> 8 -> 2

jmeint 18 -> 32 -> 8 -> 2

jpeg 64 -> 16 -> 8 -> 64

kmeans 6 -> 8 -> 4 -> 1

sobel 9 -> 8 -> 1

swaptions 1 -> 16 -> 8 -> 1

geomean

Application Energy Reduction-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

swaptions 1 -> 16 -> 8 -> 1

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.011817544342672

(a) Whole application speedup.

Ap
pl

ic
at

io
n

En
er

gy
 R

ed
uc

tio
n

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Speedup A-NPU over D-ANPU

Application Topology Speedup (1.1336
GHz)

Speedup (1.7 GHz)

blackscholes 6 -> 8 -> 8 -> 1 2.50 3.75

fft 1 -> 4 -> 4 -> 2 1.89 2.83

inversek2j 2 -> 8 -> 2 2.42 3.63

jmeint 18 -> 32 -> 8 -> 2 3.92 5.88

jpeg 64 -> 16 -> 8 -> 64 15.21 22.81

kmeans 6 -> 8 -> 4 -> 1 2.44 3.67

sobel 9 -> 8 -> 1 2.75 4.13

swaptions 1 -> 16 -> 8 -> 1 2.08 3.13

geomean 3.14 4.71

Energy (nJ)

Application Topology A-NPU - 1/3 Digital
Frequency
(Manual)

A-NPU - 1/2 Digital
Frequency
(Manual)

D-ANPU (Hadi) Improvement

blackscholes 6 -> 8 -> 8 -> 1 0.86 0.96 8.15 9.53

fft 1 -> 4 -> 4 -> 2 0.54 0.61 18.21 33.85

inversek2j 2 -> 8 -> 2 0.51 0.58 2.04 4.00

jmeint 18 -> 32 -> 8 -> 2 1.99 2.21 2.33 1.17

jpeg 64 -> 16 -> 8 -> 64 1.36 1.51 56.26 41.47

kmeans 6 -> 8 -> 4 -> 1 0.67 0.76 111.54 165.46

sobel 9 -> 8 -> 1 0.46 0.53 5.77 12.41

swaptions 1 -> 16 -> 8 -> 1 1.22 1.36 5.49 4.51

geomean 0.79 0.89 11.43 14.40

Application Speedup

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1 14.1441013944802 24.5221729784241 48.0035326510468 0.294647093939904 0.510841007404262 0.489158992595738

fft 1 -> 4 -> 4 -> 2 1.12709929506364 1.32327013458615 1.64546022960568 0.68497510592142 0.804194541306698 0.195805458693302

inversek2j 2 -> 8 -> 2 7.98161179269307 10.9938617211157 14.9861613789597 0.53259881505741 0.733600916412848 0.266399083587152

jmeint 18 -> 32 -> 8 -> 2 2.39085372136084 6.26190545947988 14.0755862116774 0.169858198827793 0.444877063399665 0.555122936600335

jpeg 64 -> 16 -> 8 -> 64 1.5617504494923 1.87946485929561 1.90676591975013 0.819057249406344 0.985682007334125 0.014317992665875

kmeans 6 -> 8 -> 4 -> 1 0.590012411780286 0.844832278645737 1.20518169214864 0.489563039020608 0.700999927354972 0.299000072645028

sobel 9 -> 8 -> 1 2.4864550898745 3.10723166292606 3.62429006473114 0.686053004992842 0.857335259438336 0.142664740561664

geomean 2.5478647166383 3.7797513074705 5.42766338726694 0.469422021014693 0.696386462789426 0.189114065410968

Dynamic Insts

Application Topology CPU Other Instructions NPU Queue
Instructions

Less Insts

blackscholes 6 -> 8 -> 8 -> 1 1.0 0.02 0.003 0.972

fft 1 -> 4 -> 4 -> 2 1.0 0.31 0.012 0.674

inversek2j 2 -> 8 -> 2 1.0 0.03 0.008 0.959

jmeint 18 -> 32 -> 8 -> 2 1.0 0.03 0.018 0.951

jpeg 64 -> 16 -> 8 -> 64 1.0 0.43 0.005 0.563

kmeans 6 -> 8 -> 4 -> 1 1.0 0.66 0.048 0.297

sobel 9 -> 8 -> 1 1.0 0.41 0.023 0.571

swaptions 1 -> 16 -> 8 -> 1

geomean

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Sp
ee

du
p

0

0.2

0.4

0.6

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

0.44

0.51
0.470.49

0.17

0.53

0.29

Core + D-NPU
Core + A-NPU

N
or

m
al

iz
ed

 #
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

0.00

0.25

0.50

0.75

1.00

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other Instructions
NPU Queue Instructions

8-bit D-NPU vs. A-NPU

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

swaptions 1 -> 16 -> 8 -> 1 50 10.30 8 1.22 2.08 3.13 8.45 7.58

geomean 59.90 9.71 6.35 0.84 3.33 4.71 12.14 10.32

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Energy Saving
Speedup

En
er

gy
 Im

pr
ov

em
en

t

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

10.3

7.6

10.5

7.6

73.825.5

4.1

3.3

8.5

12.14

8.45

11.81

8.56

82.2128.28

4.57

3.79

9.53

1/3 Digital Frequency
1/2 Digital Frequency

Analog Sigmoid

Application Topology Fully Precise
Digital Sigmoid

Fully Precise
Digital Sigmoid

Analog Sigmoid Analog Sigmoid

blackscholes 6 -> 8 -> 8 -> 1 0.0839 8.39 10.21 0.0182

fft 1 -> 4 -> 4 -> 2 0.0303 3.03 4.13 0.011

inversek2j 2 -> 8 -> 2 0.0813 8.13 9.42 0.0129

jmeint 18 -> 32 -> 8 -> 2 0.1841 18.41 19.67 0.0126

jpeg 64 -> 16 -> 8 -> 64 0.0662 6.62 8.35 0.0173

kmeans 6 -> 8 -> 4 -> 1 0.06 6.10 7.28 0.0118

sobel 9 -> 8 -> 1 0.0428 4.28 5.21 0.0093

swaptions 1 -> 16 -> 8 -> 1 0.0261 2.61 3.34 0.0073

geomean 0.06 6.02 7.32 0.01

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or

0%

2%

4%

6%

8%

10%

12%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Fully Precise Digital Sigmoid
Analog Sigmoid

Table 1

Maximum number of Incoming Synapses to each
Neuron

4 8 16

Application
Level Error
(Image Diff)

14.32% 6.62% 5.76%

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or
 (I

m
ag

e
D

iff
)

0%

3%

6%

9%

12%

15%

Maximum number of Incoming Synapses to each Neuron
4 8 16

Ap
pl

ic
at

io
n

Sp
ee

du
p

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Application Level Error

Benchmarks Fully Precise
Digital Sigmoid

Analog
Sigmoid

blackscholes 8.39% 10.21%

fft 3.03% 4.13%

inversek2j 8.13% 9.42%

jmeint 18.41% 19.67%

jpeg 6.62% 8.35%

kmeans 6.1% 7.28%

sobel 4.28% 5.21%

swaptions 2.61% 3.34%

geomean 6.02% 7.32%

blackscholes fft inversek2j jmeint jpeg kmeans sobel

Floating Point
D-NPU

6.0% 2.7% 6.2% 17.6% 5.4% 3.2% 3.8%

A-NPU + Ideal
Sigmoid

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3%

A-NPU 10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2%

Benchmarks blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other
Instructions

2.4% 31.4% 3.3% 3.1% 43.3% 65.5% 40.5%

NPU Queue
Instructions

0.3% 1.2% 0.8% 1.8% 0.5% 4.8% 2.3%

42
.5

51
.2

52
.5

1.
6 1.
7

1.
7

25
.8

30
.0

31
.4

7.
3

17
.8

18
.8

2.
2 2.
3

2.
3

1.
1 1.
3

1.
3

2.
7 2.
8

2.
8

14
.1

24
.5

48
.0

1.
1 1.
3 1.

6

7.
9

10
.9

14
.9

2.
3

6.
2

14
.0

1.
5 1.

8
1.

9

0.
5 0.
8 1.

2

2.
4 3.

1 3.
6

9.
5

2.
5

3.
7

1.
8

4.
5

2.
4

28
.2

3.
9

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Percentage
instructions
subsumed

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3% 2.6% 6.0%

Analog
Sigmoid

10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2% 3.3% 7.3%

blackscholes fft inversek2j jmeint jpeg kmeans sobel
Percentage
Instructions
Subsumed

97.2% 67.4% 95.9% 95.1% 56.3% 29.7% 57.1%

82
.2

15
.2

8.
5

2.
4

11
.8

2.
7

8.
4

2.
0

12
.1

3.
3

2.
5

3.
7

5.
4

5.
1

6.
3 6.
5

Application Energy Reduction

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.787719817984527 0.977559461493782 0.011817544342672

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Speedup
Energy Saving

8-bit D-NPU vs. A-NPU-1

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

geomean 61.47 9.63 6.15 0.79 3.33 5.00 12.14 10.79

2.
5

9.
5

3.
7

1.
8

2.
4

4.
5

28
.2

3.
9

82
.2

15
.2

8.
5

2.
4 2.

7
11

.8

12
.1

3.
3

Application Speedup-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1

fft 1 -> 4 -> 4 -> 2

inversek2j 2 -> 8 -> 2

jmeint 18 -> 32 -> 8 -> 2

jpeg 64 -> 16 -> 8 -> 64

kmeans 6 -> 8 -> 4 -> 1

sobel 9 -> 8 -> 1

swaptions 1 -> 16 -> 8 -> 1

geomean

Application Energy Reduction-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

swaptions 1 -> 16 -> 8 -> 1

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.011817544342672

(b) Whole application energy saving.

Ap
pl

ic
at

io
n

En
er

gy
 R

ed
uc

tio
n

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Speedup A-NPU over D-ANPU

Application Topology Speedup (1.1336
GHz)

Speedup (1.7 GHz)

blackscholes 6 -> 8 -> 8 -> 1 2.50 3.75

fft 1 -> 4 -> 4 -> 2 1.89 2.83

inversek2j 2 -> 8 -> 2 2.42 3.63

jmeint 18 -> 32 -> 8 -> 2 3.92 5.88

jpeg 64 -> 16 -> 8 -> 64 15.21 22.81

kmeans 6 -> 8 -> 4 -> 1 2.44 3.67

sobel 9 -> 8 -> 1 2.75 4.13

swaptions 1 -> 16 -> 8 -> 1 2.08 3.13

geomean 3.14 4.71

Energy (nJ)

Application Topology A-NPU - 1/3 Digital
Frequency
(Manual)

A-NPU - 1/2 Digital
Frequency
(Manual)

D-ANPU (Hadi) Improvement

blackscholes 6 -> 8 -> 8 -> 1 0.86 0.96 8.15 9.53

fft 1 -> 4 -> 4 -> 2 0.54 0.61 18.21 33.85

inversek2j 2 -> 8 -> 2 0.51 0.58 2.04 4.00

jmeint 18 -> 32 -> 8 -> 2 1.99 2.21 2.33 1.17

jpeg 64 -> 16 -> 8 -> 64 1.36 1.51 56.26 41.47

kmeans 6 -> 8 -> 4 -> 1 0.67 0.76 111.54 165.46

sobel 9 -> 8 -> 1 0.46 0.53 5.77 12.41

swaptions 1 -> 16 -> 8 -> 1 1.22 1.36 5.49 4.51

geomean 0.79 0.89 11.43 14.40

Application Speedup

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1 14.1441013944802 24.5221729784241 48.0035326510468 0.294647093939904 0.510841007404262 0.489158992595738

fft 1 -> 4 -> 4 -> 2 1.12709929506364 1.32327013458615 1.64546022960568 0.68497510592142 0.804194541306698 0.195805458693302

inversek2j 2 -> 8 -> 2 7.98161179269307 10.9938617211157 14.9861613789597 0.53259881505741 0.733600916412848 0.266399083587152

jmeint 18 -> 32 -> 8 -> 2 2.39085372136084 6.26190545947988 14.0755862116774 0.169858198827793 0.444877063399665 0.555122936600335

jpeg 64 -> 16 -> 8 -> 64 1.5617504494923 1.87946485929561 1.90676591975013 0.819057249406344 0.985682007334125 0.014317992665875

kmeans 6 -> 8 -> 4 -> 1 0.590012411780286 0.844832278645737 1.20518169214864 0.489563039020608 0.700999927354972 0.299000072645028

sobel 9 -> 8 -> 1 2.4864550898745 3.10723166292606 3.62429006473114 0.686053004992842 0.857335259438336 0.142664740561664

geomean 2.5478647166383 3.7797513074705 5.42766338726694 0.469422021014693 0.696386462789426 0.189114065410968

Dynamic Insts

Application Topology CPU Other Instructions NPU Queue
Instructions

Less Insts

blackscholes 6 -> 8 -> 8 -> 1 1.0 0.02 0.003 0.972

fft 1 -> 4 -> 4 -> 2 1.0 0.31 0.012 0.674

inversek2j 2 -> 8 -> 2 1.0 0.03 0.008 0.959

jmeint 18 -> 32 -> 8 -> 2 1.0 0.03 0.018 0.951

jpeg 64 -> 16 -> 8 -> 64 1.0 0.43 0.005 0.563

kmeans 6 -> 8 -> 4 -> 1 1.0 0.66 0.048 0.297

sobel 9 -> 8 -> 1 1.0 0.41 0.023 0.571

swaptions 1 -> 16 -> 8 -> 1

geomean

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Sp
ee

du
p

0

0.2

0.4

0.6

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

0.44

0.51
0.470.49

0.17

0.53

0.29

Core + D-NPU
Core + A-NPU

N
or

m
al

iz
ed

 #
 o

f D
yn

am
ic

 In
st

ru
ct

io
ns

0.00

0.25

0.50

0.75

1.00

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other Instructions
NPU Queue Instructions

8-bit D-NPU vs. A-NPU

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

swaptions 1 -> 16 -> 8 -> 1 50 10.30 8 1.22 2.08 3.13 8.45 7.58

geomean 59.90 9.71 6.35 0.84 3.33 4.71 12.14 10.32

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Energy Saving
Speedup

En
er

gy
 Im

pr
ov

em
en

t

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

10.3

7.6

10.5

7.6

73.825.5

4.1

3.3

8.5

12.14

8.45

11.81

8.56

82.2128.28

4.57

3.79

9.53

1/3 Digital Frequency
1/2 Digital Frequency

Analog Sigmoid

Application Topology Fully Precise
Digital Sigmoid

Fully Precise
Digital Sigmoid

Analog Sigmoid Analog Sigmoid

blackscholes 6 -> 8 -> 8 -> 1 0.0839 8.39 10.21 0.0182

fft 1 -> 4 -> 4 -> 2 0.0303 3.03 4.13 0.011

inversek2j 2 -> 8 -> 2 0.0813 8.13 9.42 0.0129

jmeint 18 -> 32 -> 8 -> 2 0.1841 18.41 19.67 0.0126

jpeg 64 -> 16 -> 8 -> 64 0.0662 6.62 8.35 0.0173

kmeans 6 -> 8 -> 4 -> 1 0.06 6.10 7.28 0.0118

sobel 9 -> 8 -> 1 0.0428 4.28 5.21 0.0093

swaptions 1 -> 16 -> 8 -> 1 0.0261 2.61 3.34 0.0073

geomean 0.06 6.02 7.32 0.01

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or

0%

2%

4%

6%

8%

10%

12%

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Fully Precise Digital Sigmoid
Analog Sigmoid

Table 1

Maximum number of Incoming Synapses to each
Neuron

4 8 16

Application
Level Error
(Image Diff)

14.32% 6.62% 5.76%

Ap
pl

ic
at

io
n

Le
ve

l E
rr

or
 (I

m
ag

e
D

iff
)

0%

3%

6%

9%

12%

15%

Maximum number of Incoming Synapses to each Neuron
4 8 16

Ap
pl

ic
at

io
n

Sp
ee

du
p

0

2

4

6

8

10

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Core + D-NPU
Core + A-NPU
Core + Ideal NPU

Application Level Error

Benchmarks Fully Precise
Digital Sigmoid

Analog
Sigmoid

blackscholes 8.39% 10.21%

fft 3.03% 4.13%

inversek2j 8.13% 9.42%

jmeint 18.41% 19.67%

jpeg 6.62% 8.35%

kmeans 6.1% 7.28%

sobel 4.28% 5.21%

swaptions 2.61% 3.34%

geomean 6.02% 7.32%

blackscholes fft inversek2j jmeint jpeg kmeans sobel

Floating Point
D-NPU

6.0% 2.7% 6.2% 17.6% 5.4% 3.2% 3.8%

A-NPU + Ideal
Sigmoid

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3%

A-NPU 10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2%

Benchmarks blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Other
Instructions

2.4% 31.4% 3.3% 3.1% 43.3% 65.5% 40.5%

NPU Queue
Instructions

0.3% 1.2% 0.8% 1.8% 0.5% 4.8% 2.3%

42
.5

51
.2

52
.5

1.
6 1.
7

1.
7

25
.8

30
.0

31
.4

7.
3

17
.8

18
.8

2.
2 2.
3

2.
3

1.
1 1.
3

1.
3

2.
7 2.
8

2.
8

14
.1

24
.5

48
.0

1.
1 1.
3 1.

6

7.
9

10
.9

14
.9

2.
3

6.
2

14
.0

1.
5 1.

8
1.

9

0.
5 0.
8 1.

2

2.
4 3.

1 3.
6

9.
5

2.
5

3.
7

1.
8

4.
5

2.
4

28
.2

3.
9

blackscholes fft inversek2j jmeint jpeg kmeans sobel swaptions geomean

Percentage
instructions
subsumed

8.4% 3.0% 8.1% 18.4% 6.6% 6.1% 4.3% 2.6% 6.0%

Analog
Sigmoid

10.2% 4.1% 9.4% 19.7% 8.4% 7.3% 5.2% 3.3% 7.3%

blackscholes fft inversek2j jmeint jpeg kmeans sobel
Percentage
Instructions
Subsumed

97.2% 67.4% 95.9% 95.1% 56.3% 29.7% 57.1%

82
.2

15
.2

8.
5

2.
4

11
.8

2.
7

8.
4

2.
0

12
.1

3.
3

2.
5

3.
7

5.
4

5.
1

6.
3 6.
5

Application Energy Reduction

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.787719817984527 0.977559461493782 0.011817544342672

Im
pr

ov
em

en
t

0

1

2

3

4

5

blackscholes fft inversek2j jmeint jpeg kmeans sobel geomean

Speedup
Energy Saving

8-bit D-NPU vs. A-NPU-1

8-bit D-NPU 8-bit A-NPU Cycle Improvement Energy Improvement

Application Topology Cycle Energy (nJ) Cycle Energy Cycle
Improvement
(1.1336 GHz)

Cycle
Improvement (1.7
GHz)

Energy
Improvement
(1.1336 GHz)

Energy
Improvement (1.7
GHz)

blackscholes 6 -> 8 -> 8 -> 1 45 8.15 6 0.86 2.50 3.75 9.53 8.48

fft 1 -> 4 -> 4 -> 2 34 2.04 6 0.54 1.89 2.83 3.79 3.33

inversek2j 2 -> 8 -> 2 29 2.33 4 0.51 2.42 3.63 4.57 4.05

jmeint 18 -> 32 -> 8 -> 2 141 56.26 12 1.99 3.92 5.88 28.28 25.50

jpeg 64 -> 16 -> 8 -> 64 365 111.54 8 1.36 15.21 22.81 82.21 73.76

kmeans 6 -> 8 -> 4 -> 1 44 5.77 6 0.67 2.44 3.67 8.56 7.57

sobel 9 -> 8 -> 1 33 5.49 4 0.46 2.75 4.13 11.81 10.45

geomean 61.47 9.63 6.15 0.79 3.33 5.00 12.14 10.79

2.
5

9.
5

3.
7

1.
8

2.
4

4.
5

28
.2

3.
9

82
.2

15
.2

8.
5

2.
4 2.

7
11

.8

12
.1

3.
3

Application Speedup-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU speedup

blackscholes 6 -> 8 -> 8 -> 1

fft 1 -> 4 -> 4 -> 2

inversek2j 2 -> 8 -> 2

jmeint 18 -> 32 -> 8 -> 2

jpeg 64 -> 16 -> 8 -> 64

kmeans 6 -> 8 -> 4 -> 1

sobel 9 -> 8 -> 1

swaptions 1 -> 16 -> 8 -> 1

geomean

Application Energy Reduction-1

Application Topology Core + D-NPU Core + A-NPU Core + Ideal NPU Core + D-NPU Core + A-NPU

blackscholes 6 -> 8 -> 8 -> 1 42.5954312379609 51.250425520663 52.5015883985599 0.811317000822956 0.976169047145797 0.0238309528542033

fft 1 -> 4 -> 4 -> 2 1.66144638762811 1.70352109148241 1.71911629291664 0.966453749797993 0.990928361566649 0.00907163843335124

inversek2j 2 -> 8 -> 2 25.8726893148605 30.0198258158588 31.432603181923 0.823116340861644 0.955053758739376 0.0449462412606239

jmeint 18 -> 32 -> 8 -> 2 7.32010374044854 17.8930069836166 18.8933415016608 0.387443573165978 0.947053594624526 0.052946405375474

jpeg 64 -> 16 -> 8 -> 64 2.21156760942508 2.39631940662302 2.39878691088084 0.921952508325545 0.998971353292519 0.0010286467074806

kmeans 6 -> 8 -> 4 -> 1 1.15321498752577 1.33727439731608 1.36611738885167 0.844155119418499 0.978886886463078 0.0211131135369225

sobel 9 -> 8 -> 1 2.74676510816413 2.83229403346624 2.84047691805956 0.967008424078502 0.997119186379832 0.00288081362016845

swaptions 1 -> 16 -> 8 -> 1

geomean 5.13306978649764 6.37013417935512 6.51636491720012 0.011817544342672

(c) % dynamic instructions subsumed.

Figure 5: Whole application speedup and energy saving with
D-NPU, A-NPU, and an Ideal NPU that consumes zero energy
and takes zero cycles for neural computation.

and our A-NPU which incorporates non-idealities of the ana-
log sigmoid. Except for jmeint, which shows error above 10%,
all of the applications show error less than or around 10%.
Application average error rates with the A-NPU range from
4.1% to 10.2%. This quality-of-result loss is commensurate
with other work on quality trade-offs use digital techniques.
Truffle [11] and EnerJ [26] shows similar error (3–10%) for
some applications and much greater error (above 80%) for
others in a moderate configuration. Green [2] has error rates
below 1% for some applications but greater than 20% for oth-
ers. A case study [20] explores manual optimizations of the
x264 video encoder that trade off 0.5–10% quality loss.

6. Related Work
General-purpose approximate computing. A growing
body of work has explored relaxing the abstraction of full
accuracy at the circuit and architecture level for gains in per-
formance, energy, and resource utilization [9, 11, 25, 6, 22, 12].
These circuit and architecture studies, although proven suc-
cessful, are limited to purely digital techniques. We explore

6

how a mixed-signal, analog-digital approach can go beyond
what digital approximate techniques offer.

Analog and digital neural hardware. There is an exten-
sive body of work on hardware implementations of neural
networks both in the digital [10, 30] and the analog [4, 18]
domain. Recent work has proposed higher-level abstractions
for implementation of neural networks [15]. Other work has
examined fault-tolerant hardware neural networks [14, 29]. In
particular, Temam [29] uses datasets from the UCI machine
learning repository to explore fault tolerance of a hardware
neural network design. In contrast, our compilation, neural-
network selection/training framework, and architecture de-
sign aim at applying neural networks to general-purpose code
written in familiar programming models and languages, not
explicitly written to utilize neural networks directly.

Neural-based code acceleration. A recent study [7] shows
that a number of applications can be manually reimplemented
with explicit use of various kinds of neural networks. That
study did not prescribe a programming workflow, nor a pre-
ferred hardware architecture. More recent work exposes ana-
log spiking neurons as primitive operators [3]. This work
devises a new programming model that allows programmers
to express digital signal-processing applications as a graph of
analog neurons and automatically maps the expressed graph
to a tiled analog, spiking-neural hardware. The work in [3] is
restricted to the domain of applications whose input are real-
world signals that should be encoded as pulses. Our approach
intends to address the long-standing challenges of utilizing
analog computation (programmability and generality) by not
imposing domain-specific limitations, and by providing ana-
log circuitry that is integrated with a conventional, digital
processor without require a new programming paradigm.

7. Conclusions
Analog circuits inherently trade accuracy for very attractive
energy-efficiency gains. However, it is challenging to utilize
them in a way that is both programmable and generally useful.
The transformation of general-purpose, approximable code
to a neural model, as well as the use of neural accelerators,
provide an avenue for realizing the benefits of analog compu-
tation by taking advantage of the fixed-function qualities of a
neural network while targeting traditionally-written, generally-
approximable code. We presented a complete solution on
using analog neural networks for accelerating approximate
applications, from circuits to compilers design. A very impor-
tant insight from this work is that it is crucial to expose analog
circuit characteristics to the compilation and neural network
training phase. Our analog neural acceleration provides whole
application speedup of 3.3× and and energy savings of 12.1×
with quality loss less than 10% for all except one benchmark.

References
[1] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed.

Oxford University Press, 2002.
[2] W. Baek and T. M. Chilimbi, “Green: A framework for supporting

energy-conscious programming using controlled approximation,” in
PLDI, 2010.

[3] B. Belhadj, A. Joubert, Z. Li, R. Héliot, and O. Temam, “Continuous
real-world inputs can open up alternative accelerator designs,” in ISCA,
2013.

[4] B. E. Boser, E. Säckinger, J. Bromley, Y. L. Cun, L. D. Jackel, and
S. Member, “An analog neural network processor with programmable
topology,” J. Solid-State Circuits, vol. 26, no. 12, December 1991.

[5] Y. Cao, “Predictive technology models,” 2013. Available: http:
//ptm.asu.edu

[6] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz,
K. V. Palem, and B. Seshasayee, “Ultra-efficient (embedded) SOC
architectures based on probabilistic CMOS (PCMOS) technology,” in
DATE, 2006.

[7] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti,
A. Nere, S. Qiu, M. Sebag, and O. Temam, “Benchnn: On the broad
potential application scope of hardware neural network accelerators,”
in IISWC, 2012.

[8] F. Choudry, E. Fiesler, A. Choudry, and H. J. Caulfield, “A weight
discretization paradigm for optical neural networks,” in ICOE, 1990.

[9] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An architec-
tural framework for software recovery of hardware faults,” in ISCA,
2010.

[10] H. Esmaeilzadeh, P. Saeedi, B. N. Araabi, C. Lucas, and S. M. Fakhraie,
“Neural network stream processing core (NnSP) for embedded systems,”
in ISCAS, 2006.

[11] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ASPLOS, 2012.

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in MICRO, 2012.

[13] S. Galal and M. Horowitz, “Energy-efficient floating-point unit design,”
IEEE Trans. Comput., vol. 60, no. 7, 2011.

[14] A. Hashmi, H. Berry, O. Temam, and M. Lipasti, “Automatic abstrac-
tion and fault tolerance in cortical microarchitectures,” in ISCA, 2011.

[15] A. Hashmi, A. Nere, J. J. Thomas, and M. Lipasti, “A case for neuro-
morphic ISAs,” in ASPLOS, 2011.

[16] C. Igel and M. Hüsken, “Improving the RPROP learning algorithm,”
in NC, 2000.

[17] D. A. Johns and K. Martin, Analog Integrated Circuit Design. John
Wiley and Sons, Inc., 1997.

[18] A. Joubert, B. Belhadj, O. Temam, and R. Héliot, “Hardware spiking
neurons design: Analog or digital?” in IJCNN, 2012.

[19] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO,
2009.

[20] S. Misailovic, S. Sidiroglou, H. Hoffman, and M. Rinard, “Quality of
service profiling,” in ICSE, 2010.

[21] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing
NUCA organizations and wiring alternatives for large caches with
CACTI 6.0,” in MICRO, 2007.

[22] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochas-
tic processors,” in DATE, 2010.

[23] A. Patel, F. Afram, S. Chen, and K. Ghose, “MARSSx86: A full system
simulator for x86 CPUs,” in DAC, 2011.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition. MIT Press,
1986, vol. 1.

[25] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage:
Self-tuning approximation for graphics engines,” in MICRO, 2013.

[26] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general
low-power computation,” in PLDI, 2011.

[27] J. Schemmel, J. Fieres, and K. Meier, “Wafer-scale integration of
analog neural networks,” in IJCNN, 2008.

[28] S. M. Tam, B. Gupta, H. A. Castro, and M. Holler, “Learning on an
analog VLSI neural network chip,” in Systems, Man, and Cybernetics
(SMC), 1990.

[29] O. Temam, “A defect-tolerant accelerator for emerging high-
performance applications,” in ISCA, 2012.

[30] J. Zhu and P. Sutton, “FPGA implementations of neural networks: A
survey of a decade of progress,” in FPL, 2003.

7

http://ptm.asu.edu
http://ptm.asu.edu

	Introduction
	Analog Circuits for Neural Computation
	Mixed-Signal Neural Accelerator (A-NPU)
	Compilation for Analog Acceleration
	Evaluations
	Related Work
	Conclusions

