
Methodical Approximate Hardware Design and Reuse

Amir Yazdanbakhsh Bradley Thwaites Jongse Park Hadi Esmaeilzadeh
Georgia Institute of Technology

{a.yazdanbakhsh, bthwaites, jspark}@gatech.edu hadi@cc.gatech.edu

Abstract
Design and reuse of approximate hardware components—

digital circuits that may produce inaccurate results—can po-
tentially lead to significant performance and energy improve-
ments. Many emerging error-resilient applications can exploit
such designs provided approximation is applied in a controlled
manner. This paper provides the design abstractions and se-
mantics for methodical, modular, and controlled approximate
hardware design and reuse. With these abstractions, critical
parts of the circuit still carry the strict semantics of traditional
hardware design, while flexibility is provided. We discuss these
abstractions in the context of synthesizable register transfer
level (RTL) design with Verilog. Our framework governs the
application of approximation during the synthesis process
without involving the designers in the details of approximate
synthesis and optimization. Through high-level annotations,
our design paradigm provides high-level control over where
and to what degree approximation is applied. We believe
that our work forms a foundation for practical approximate
hardware design and reuse.

1. Introduction
As process technology scales to atomic levels, providing the
traditional abstraction of near-perfect accuracy at the circuit
level imposes high taxes in terms of performance and energy
efficiency [3, 7]. Relaxing this abstraction and moving toward
a “methodical” approximate hardware design—where parts of
the circuit may generate approximate outputs—can potentially
unleash considerable benefits in both efficiency and perfor-
mance. There is in fact an emerging opportunity to avoid such
high taxes due to a growing body of prominent applications
that are inherently robust to inaccuracies [1,4,6,8,9,11,12,20].
Hardware designers have an opportunity to exploit this prop-
erty by only providing strict accuracy when and where it is
required in the system. However, such a radical departure
in digital hardware design requires design abstractions that
allow designers to reason about and delineate which part of
the hardware system or circuit is “critical” and cannot be ap-
proximated. These design abstractions also need to provide
an option to the designers to control the error levels as ap-
proximation is applied to the different parts of the design.
Furthermore, hardware systems implementation relies on mod-
ular design practices where the engineers build libraries of
modules1 and compose them to build a more complex hard-
ware system, e.g., a system-on-a-chip (SoC). Further, many

1In this paper, we refer to a hardware module as a building blocks of a
hardware system that can potentially be reused across many different designs.

complex SoC designs are composed of semiconductor intel-
lectual property cores (IP cores) that are designed and sold
by different vendors. In this industrial ecosystem, reusing
IP cores is imperative and is a major motivating factor for
innovation and entrepreneurship. Generally, hardware systems
design cycle has two phases: (1) the “design phase” when
engineers design the IP cores and (2) the “reuse phase” when
the engineers incorporate the IP cores in a larger system. This
paper describes the necessary system design abstractions and
semantics that enable “methodical and controlled approximate
hardware design, description, and reuse.”

In order to incorporate approximation in such a modular
design ecosystem while supporting approximation in both
phases, our framework provides these four fundamental design
abstractions:

1. [Design Phase] Design abstractions for delineating which
parts of a hardware module can be approximated safely
using an approximation plan for the module (Section 2).

2. [Design Phase] Design abstractions for interfacing approx-
imate and precise hardware modules (Section 3).

3. [Reuse Phase] Design abstractions for overriding the ap-
proximation plan (Section 4).

4. [Reuse Phase] Design abstractions that enable designers to
guide the approximate synthesis process without involving
them in how approximate synthesis and optimization is
applied (Sections 5 and 6).

We provide concrete extensions to the Verilog hardware
description language to demonstrate the necessity and effec-
tiveness of these design abstractions. Furthermore, state of
the art programming languages for approximation such as En-
erJ [21] and Rely [2] require programmers to manually and
explicitly declare low-level details such as the specific vari-
ables and operations that can be approximated. In contrast, we
devise concise, intuitive, and high-level semantics that enable
hardware designers to rely on an automatic synthesis process
to discover where and how to apply approximation. Our ap-
proximate hardware design semantics lower the restrictions of
the typical hardware design and synthesis cycle, which aims to
optimize for the worst case conditions. In this realm of approx-
imate hardware design, our abstractions govern the synthesis
process, which needs to inevitably incorporate “selectively”
relaxed semantics. Through explicit constraints, our system
allows designers to fully specify the functional characteristics
of their designs with respect to the degree of approximation
applied at a high level of abstraction without concern for the
details of synthesis and optimization. While prior work has
focused on synthesis and optimization of functional units with

1

a
b
c_in

(* A *) s

c_out

w0

w1

w2

w3

x0 x1

(a) Full adder design

module fa(a, b, c_in, c_out, s);
input a, b, c_in;
output c_out;
(∗A∗) output s;
wire w0, w1, w2, w3;

xor x0(w0, a, b);
xor x1(s, w0, c_in);

and u2(w1, a, b);
and u2(w2, a, c_in);
and u2(w3, b, c_in);
or u4(c_out, w1, w2, w3);

endmodule

(b) Approximate full adder in Verilog

Figure 1: Approximation plan for a full adder. Shaded gates
can be approximated.

approximate semantics [10, 13, 14, 18, 22–24], our framework
enables a modular and methodical approach toward designing
and reusing approximate hardware “systems.”

2. Approximation Plan
In this section, we describe how a designer specifies an ap-
proximation plan for a hardware module. In our framework,
an approximation plan implicitly identifies which part of the
module can be approximated by the synthesis tool. For sim-
plicity, we first describe the approximation plan only within a
module, leaving the details of reuse and more complex designs
to Sections 4 and 6.

Figure 1a shows a full adder, in which s is the sum of the
three inputs, a, b, c_in, and c_out is the carry out. Suppose the
designer intends to allow the logic that produces the sum, s, to
be approximate while keeping the logic for c_out precise. One
option is to allow the designer to explicitly mark the XOR gates
in 1a as approximate units. However, we find this approach
to be burdensome. Instead, we only require the designer to
declare the wire s as an approximate signal. Then, the compiler
will perform a static analysis and automatically identify the
hardware elements that are candidates for approximation. In
Figure 1a, as the designer declares s as approximate, the static
analysis will identify that the two XOR gates that contribute to
s’s value are approximable. With this approach, the designer
does not need to declare any other wires including a, b, c_in,
and w nor any of the XOR gates as approximate. Thus, this
abstraction significantly reduces the burden of the designer
to analyze and understand complex data flows throughout the
circuit. She only intuitively declares a wire as approximate
and the static analysis automates the rest.

For backward compatibility, all the wires and units are
precise by default. Thus, an unmodified Verilog code will
produce the expected results. Therefore, in Figure 1a, the
unmarked c_out signal and ANDs, wires, and ORs generating
c_out will be precise.

To support this approximate design methodology, we intro-
duce one new language construct to Verilog to allow approxi-

a
b
c_in

(*A *) s

c_out

w2

w1

x0
x1

w0

(a) Full adder design

module fa(a, b, c_in, c_out, s);
input a, b, c_in;
output c_out;
(∗A∗) output s;
wire w0, w1, w2, w3;

xor x0(w0, a, b);
xor x1(s, w0, c_in);

and u2(w1, c_in, w0);
and u2(w2, a, b);
or u2(c_out, w2, w1);

endmodule

(b) Approximate full adder in Verilog

Figure 2: Approximation plan for a full adder. Only the one
shaded gate can be approximated.

mate declarations. This construct, (*A*)2, is an attribute that
can be attached to any wire3 in the design. Figure 1b shows
the Verilog implementation of the full adder. Notice that in our
framework, there is no notion of approximate inputs. Within a
module, the designer does not have control over the precision
of the inputs, only how the logic inside the module operates
on those inputs.

In many cases, the logic which produces an approximate
signal may also contribute to a precise signal at some interme-
diary stage. During static analysis, we maintain the property
that any precise signal will not be influenced by approximate
logic, providing a guarantee of safety in our approximate de-
sign paradigm. Figure 2a shows an optimized full adder in
which, again, s is an approximate signal while c_out is precise.
Since x1 only influences an approximate wire, it is a candi-
date for approximation. However, x0 generates a signal which
propagates to both approximate and precise wires. In this
situation, the safety property must be maintained, so x0 must
be implemented precisely. Our static analysis will provide this
guarantee (Section 3). In Sections 4 and 6, we will provide
the abstractions to control quality.

3. Approximate Interface
The ability to reuse components in a modular way is critical
to modern industrial hardware systems design. Before we
discuss the reuse of approximate modules in a full system,
we describe the interface abstractions through which each ap-
proximate module communicates with the rest of the system.
These abstractions define the external view of the module.
The interface of a module consists of its inputs and outputs.
Each module must declare which outputs produce approxi-
mate results. The default assumption is that if an output is not
declared approximate, then it always produces precise results
under all circumstances. Therefore, any outputs that have any
chance of being influenced by approximation within the mod-
ule must be declared approximate. We use the same (*A*)
2Verilog 2011 allows specifying attributes for wire, module, ... through the
(*ATTRIBUTE*) construct.

3In Verilog, the wire, reg, and output keywords can be used to declare a
physical wire. Our attribute can be attached to all these keywords.

2

(*A*) data_out

approx_out

(*C*) addr

data_in

(*C*) approx_in

(*C*) wrt_en

(*C*) clk

DualState
Memory

(a) Approximation interface of a dual-state mem-
ory

module DualStateMemory(
clk, wrt_en,
address,
data_in, approx_in,
data_out, approx_out);

(∗C∗) input clk;
(∗C∗) input wrt_en;
(∗C∗) input[N-1:0] address;
input[M-1:0] data_in;
(∗C∗) input approx_in;
(∗A∗) output[N-1:0] data_out;
output approx_out;
...

endmodule

(b) Approximation interface for a dual-state
memory unit in Verilog

Figure 3: Approximation interface for a memory. The shaded
gate can be approximated.

notation to declare outputs as approximate. At design time,
the designer of a module will have no knowledge of whether
approximation techniques have been applied to the inputs.
However, the designer may want to impose more stringent
requirements on certain inputs. Example may include clocks
and write-enables which are critical to the functionality of the
approximate module when instantiated and reused in a larger
hardware system. Therefore, we introduce a new construct,
(*C*), which declares an input critical. Semantically, any wire
which is influenced by approximation cannot be connected to
a critical input. These rules define the approximate interfaces
of the module. Figure 3 shows an interface for a simple mem-
ory module capable of reading and storing both precise and
approximate data. This module either writes to or reads from
addr at the rising edge of each clock, depending on the value
of wrt_en. Suppose if the value of approx_in is true, then data
can be written to an approximate memory cell, otherwise it
must be stored in a precise manner. While data_in can carry ei-
ther precise or approximate data, it could be devastating to the
functionality of the module if any of the other inputs have been
computed approximately. For example, an error in approx_in
could cause important precise data to be written to approxi-
mate storage, introducing unacceptable behavior. Thus, the
critical inputs are marked (*C*) and the module designer is as-
sured that these signals will never be affected by approximate
operations. An analogous situation is present in the outputs of
the module in Figure 3. The signal approx_out is not marked
as approximate, indicating that no approximate operations
were applied to this output at any point within the scope of

Full Adder

a[0]b[0]

c_in

z[0]

c[0]
Full Adder

a[1]b[1]

z[1]

c[1]
Full Adder

a[2]b[2]

(*C*) z[2]

c[2]
Full Adder

a[7]b[7]

(*C*) z[7]

c_out

Precise Modules Approximate Modules

(a) Overriding approximation in an adder

module adder(a, b, c_in, c_out, z);
input[7: 0] a, b;
input c_in;
(∗A∗) output[7: 0] z;
output c_out;

(∗C∗) wire[7: 2] z;
wire[6:0] c;

fa u0(a[0], b[0], c_in, c[0], z[0]);
fa u1(a[1], b[1], c[0], c[1], z[1]);

fa u2(a[2], b[2], c[1], c[2], z[2]);
fa u3(a[3], b[3], c[2], c[3], z[3]);
fa u4(a[4], b[4], c[3], c[4], z[4]);
fa u5(a[5], b[5], c[4], c[5], z[5]);
fa u6(a[6], b[6], c[5], c[6], z[6]);
fa u7(a[7], b[7], c[6], c_out, z[7]);

endmodule

(b) Overriding approximation in Verilog for an adder

Figure 4: Approximation interface for a memory. The shaded
gate is approximate.

the module. Similarly, even though data_out still sometimes
holds precise values, it must be marked (*A*) because there
is a possibility of approximation during its computation.

4. Overriding Approximation and Bridging
Here we focus on the controlled reuse of approximate modules.

Overriding approximation. While the approximation plan
defines where approximation is allowed within the module,
the system designer must be able to control approximation
when instantiating the module in a system. For example, as
Figure 4a illustrates, a designer may want to preserve precise
semantics for the most significant bits of an adder while allow-
ing approximation in the least significant bits. In this case, the
designer needs to override the original full adder approxima-
tion plan when instantiating the full adders producing the most
significant bits. The mechanism we provide for overriding
is to connect a critical wire to the approximate output of the
module to be overridden. As Figure 4b shows, we extend
the Verilog language to allow redeclaring part of the output
vector z as critical using (*C*). Since full adders u7 to u2
are connected to a critical wire, the compiler will not mark
them as approximable. In fact, any logic contributing to a
critical wire will not be approximated, except in exceptional
cases which we describe shortly. Notice that in terms of in-
terfacing the z output is still an approximate output from an
outside point of view. Figure 5 describes a more complicated

3

b1 b2 b3

* * * *

+ + +

x

(*C*) clk

b0

(*A*) w1 (*A*) w3
(*A*) y(*C*) y

(*A*) w0

(*A*) w2

w4 w5

d0 d1 d2 d3

*
m0 m1 m2 m3

a1 a2 a3

(*C*) rst

(a) Overriding with critical wires and approximate wires in a finite impulse
response (FIR) filter

module fir(clk, rst, x, y);
(∗C∗) input clk, rst;
input[N-1:0] x;
(∗A∗) output[M-1:0] y;
(∗C∗) wire signed[M-1:0] y;
parameter b0 = 5;
parameter b1 = 6;
parameter b2 = -7;
parameter b3 = 1;
reg signed[N-1:0] d0, d1, d2, d3;
(∗A∗) wire signed[N-1:0] w0, w1, w2, w3;
wire signed[N-1:0] w4, w5;

always @(posedge clk) begin
i f (rst == 1) begin

d0 <= 0;
d1 <= 0;
d2 <= 0;
d3 <= 0;

end else begin
d0 <= x;
d1 <= d0;
d2 <= d1;
d3 <= d2;

end
end
assign w0 = b0 * x;
assign w1 = b1 * d1;
assign w2 = b2 * d2;
assign w3 = b3 * d3;
assign w4 = w0 + w1;
assign w5 = w2 + w4;
assign y = w3 + w5;

endmodule

(b) Overriding with critical wires and approximate wires
in a finite impulse respose (FIR) filter in Verilog

Figure 5: Overriding with critical wires and approximate wires
in a filter. The shaded components are approximate.

situation involving a finite impulse response (FIR) filter. Sup-
pose the implementation details require that the adder units
be implemented precisely, but the multipliers and registers
can be implemented approximately. Since the final output y
is affected by approximation in some way within the scope of
the FIR module, it must be labeled approximate for interfac-
ing. Without overrides, this would imply that all operations
leading to y are candidates for approximation. In order to force
a precise implementation for a3, the designer must override
its output wire y using (*C*). Now, this override alone would
require the entire module to be implemented precisely, but de-
sired situation can be achieved by adding additional overrides.
By marking w0, w2, and w4 with (*A*), the precision require-
ment is overridden for all operations leading to the generation
of those wires. In this manner, the designer has flexibility and

module sobel(p0, p1, p2, p3, p5, p6, p7, p8, out);
input[7: 0] p0, p1, p2, p3, p5, p6, p7, p8;
(∗A:PixelError<0.1∗) output[7: 0] out;

wire signed[10: 0] gx, gy;
wire signed[10: 0] abs_gx, abs_gy;
wire[10: 0] sum;
wire[7: 0] out;

assign gx = ((p2-p0)+((p5-p3)<<1)+(p8-p6));
assign gy = ((p0-p6)+((p1-p7)<<1)+(p2-p8));
assign abs_gx = (gx[10]? ~gx+1 : gx);
assign abs_gy = (gy[10]? ~gy+1 : gy);
assign sum = (abs_gx+abs_gy);
assign out = (|sum[10: 8])?8’hff : sum[7: 0];

endmodule

Figure 6: Constraining approximation in sobel filter.

control over the granularity of approximation.

Approximation bridging There is a fundamental difference
between a critical wire and a critical input. A critical wire
overrides the approximation plan of the logical slice that is
driving that wire. A critical input is a mere declaration spec-
ifying that no wire carrying approximate semantics can be
connected to this input when the module is being reused. The
compiler will produce an error when any wire that was af-
fected by approximation is connected to a critical input since
it is a clear violation of module designer’s intent. This strict
interface provides confidence for designers who may not be
aware of all implementation details in a reusable lower level
module. However, we recognize that there may be cases when
the designer trusts an approximate input, but would still like
to reuse a module with an input declared as critical. For this
situation, we introduce an approximation bridge, indicated
with the annotation (*B*), which is used to certify that a sig-
nal affected by approximation can be connected to a critical
input. Figure 8a illustrates an example in which a dual state
memory, which can store both approximate and precise values,
has a critical input called addr. Under normal circumstances,
it would be crucial for the memory to keep a clean separa-
tion between approximate and precise values, which makes
addr an obvious choice as a critical input. However, suppose
the designer knows ahead of time that only approximate data
will ever be stored in this particular instance. In this case, he
can create an approximation bridge between the output of the
approximate address generator and the addr input. Bridging
does not change the precision level of a wire, it only enables
a connection. Any output that is affected by the bridged wire
will still carry approximate semantics.

5. Approximation Safety Analysis
As mentioned before, the synthesis tool performs a safety
analysis on the unapproximated gate-level netlist of the circuit.
Figure 9 conceptually illustrates the safety property of our
analysis. Each triangle represent the slice of gates that produce
each of the outputs. As depicted, the intersection of the slice
that produces a precise output, z, and the slice that produces an
approximate output must be precise. Furthermore, as Figure 10

4

module sobel(p0, p1, p2, p3, p5, p6, p7, p8, out);
input[7: 0] p0, p1, p2, p3, p5, p6, p7, p8;
output[7: 0] out;

(∗A∗) wire signed[10: 0] gx, gy;
(∗A∗) wire signed[10: 0] abs_gx, abs_gy;
(∗A∗) wire[10: 0] sum;
(∗A∗) wire[7: 0] out;

assign gx = ((p2-p0)+((p5-p3)<<1)+(p8-p6));
assign gy = ((p0-p6)+((p1-p7)<<1)+(p2-p8));
assign abs_gx = (gx[10]? ~gx+1 : gx);
assign abs_gy = (gy[10]? ~gy+1 : gy);
assign sum = (abs_gx+abs_gy);
assign out = (|sum[10: 8])?8’hff : sum[7: 0];

endmodule

Figure 7: Approximate implementation of sobel filter by En-
erJ [21]-like extensions to Verilog. With EnerJ-like model the
designer must explicitly declare all the wires that are safe to
approximate.

(*C*) clk

DualState
Memory

(*C*) wrt_en

(*A*) data_out

approx_out
data_in

(*C*) approx_in

addr

(a) Critical bridge in a memory design

module Mem(...);
...
DualStateMemory u0(.clk(clk), .wrt_en(wrt_en),

.address((∗B∗) addr),

.data_in(data_in),

.approx_in(approx_in),

.data_in(data_in),

.data_out(data_out),

.approx_out(approx_out));
...

endmodule

(b) Overriding approximation in Verilog in a memory design

Figure 8: Critical bridge is used to connect an approximate
signal to a critical input in a dual-state memory. The shaded
parts are approximate.

(*A*) y

z

Figure 9: The compiler will perform a bi-directional safety anal-
ysis and mark hardware component approximable that do not
contribute to any precise signals. Here, output z is precise
while output y is approximate. The shared logic that con-
tributes to both outputs is kept precise to guarantee safety
and ensure that output z always carries precise semantics.

(*A*) y
(*C*) y

(*A*) w0

(*A*) w1(*C*) w2

Figure 10: Multiple overriding as conceptually depicted here.
Since approximate circuit components contribute to the value
y, it is an approximate output.

shows, the safety analysis must ensure that the slices that
produce overriding critical wires are precise.

To perform the static safety analysis, we first find the wires
that must always be precise. Algorithm 1 presents the algo-
rithm to find these precise wires. In this algorithm, for each
precise output or critical wire, we mark precise the wires con-
nected to the inputs of the gate driving that output or wire. We
repeat this step for the newly marked precise wires until we
reach an input or an approximate wire. After marking all the
wires that must be precise, any remaining wires will be marked
approximate. The last step is to mark any gate that drives an
approximate wire as a safe candidate to be approximated.

This static analysis only provides safety guarantees and
does not deal with quality. In the following sections, we
will describe the design abstractions that enable designers
to express quality requirements. The quality requirements
will guide the synthesis process to only select a subset of the
safe-to-approximate gates for approximation.

6. Constraining Approximation
The ability of the designer to express quality of result require-
ments, thereby constraining approximation, is imperative at
both design and reuse time. Where and how a module will
be reused in a higher level design is not necessarily known
during its design. Furthermore, accuracy requirements can be
polymorphous depending on the exact implementation context,
yet reusability is a critical feature of many modules. Finally,
the designer should be able to control approximate synthesis
and optimization under all such circumstances without being
burdened by the details of this process. Towards this end, we
describe an abstraction and the corresponding semantics by
which acceptable error bounds may be applied to any approxi-
mate element within the system.

Our language attributes not only provide abstraction for safe
approximate hardware design but also the necessary semantics
for high-level quality control. We introduce a modified (*A*)
attribute in the form of (*A: f() < ε*), in which ε is the upper
bound for the error level described by a user-provided function
f(). However, the synthesis process may not be able to apply
approximation properly and prove meaningful guarantees with
no information about the input profile. Full knowledge about
the probability of each input, along with an approximation

5

plan, would allow the synthesis process to perform approx-
imate optimizations on the system while guaranteeing with
complete certainty that the constraints will be satisfied. Such
knowledge is not attainable in practice due to the unpredictable
nature of input data sets. Therefore, we allow the designer to
provide representative inputs for profiling, along with a global
confidence metric which should be satisfied by the synthesis
tool. These representative inputs enable the synthesis tool to
provide statistical quality guarantees. As the representative
input data become more comprehensive, the synthesis tool
can apply approximate optimizations more aggressively with
a higher degree of confidence. These high-level abstractions
for expressing quality requirements provide the following ben-
efits. (1) Hardware designers do not explicitly decide where
or how to apply approximate synthesis optimizations. (2) The-
ses modules provide better reusability since the same module
implementation can be reused across many system that may
require different level of precision. The synthesis and lay-
out tools have jurisdiction over how different approximation
techniques are applied while requiring only a single imple-
mentation from the designer. Quality constraints can be easily
adjusted or introduced to meet the accuracy needs of various
systems, providing a powerful reuse mechanism for hardware
modules, which is particularly compelling for IP designers.

Algorithm 1 Backward slicing to find precise wires.

Inputs: K: Circuit
Θ: Set of precise outputs
Ψ: Set of critical wire overrides
Y: Set of approximate wires overrides

Output: ℜ: Set of precise wires

Initialize ℜ← /0
Initialize Q← /0
for each wi ∈ (Θ ∪ Ψ) do

enqueue(Q, wi)
end for
while (Q 6= /0) do

wi← dequeue(Q)
Φ← In K, find input wires of the gate that drives wi
for each w j ∈ Φ do

if (w j /∈ Y and w j /∈ ℜ) then
ℜ← ℜ ∪ w j
enqueue(Q, w j)

end if
end for

end while

7. Approximate Synthesis Process
In our framework, we envision a synthesis tool that first takes
in the annotated Verilog source code and produces a gate-
level netlist without employing any approximate optimizations.
However, the synthesis tool preserves the approximate annota-

tions. Then, our safety analysis—part of which is presented
in Algorithm 1—will identify the safe-to-approximate subset
of the gates with regards to the designer annotations. The
safety criteria is that this subset of gates does not contribute
in any ways to precise outputs. It is in the next step that the
synthesis tool incorporates the error bounds and the quality
requirements. Considering the error constraints, the synthesis
tool may choose a subset of the safe-to-approximate gates to
be approximated, but it is illegal to apply such optimizations
to the precise gates. The synthesis tool has the liberty to apply
gate substitution, gate elimination, logic restructuring, voltage
over-scaling, or any other optimizations as it deems prudent.
The computational problem of selecting a subset of the safe-
to-approximate gates and the corresponding approximation
technique can be formulated as a constrained optimization
problem. The objective is to minimize a combination of error,
delay, and energy. In future work, we will provide a gener-
alized framework for this constrained optimization problem.
Nevertheless, our design abstractions enable the designer to
guide the synthesis process with high-level annotation while
delegating the implementation and application of approxima-
tion to an automated procedure.

8. Related Work
A growing body of research shows the applicability and signif-
icant benefits of approximation [5, 6, 8, 9, 19]. However, prior
research has not explored extending hardware description lan-
guages for systematic, and reusable approximate hardware
design. Our work is at the intersection of approximate lan-
guage design and approximate hardware synthesis techniques.

Approximate programming languages. EnerJ [21] pro-
vides a set of type qualifier to enable programmers to ex-
plicitly declare all the approximate variables in the program.
As Figure 7, if we had extended EnerJ’s model to Verilog,
the designer would have been required to manually declared
all the wires that are approximate. With our abstractions as
Figure 8 illustrates, the designer usually marks the approxi-
mate outputs and the safety analysis automatically identifies
which wires and modules are safe-to-approximate. Further-
more, EnerJ does not provide any semantic for specifying
accuracy requirements or acceptable error bounds. Rely [2]
requires the programmer to explicitly and manually mark both
variables and operations as approximate. However, it provides
semantics for verifying whether these annotations will satisfy
programer specified accuracy requirements. Or work aims to
automate the process of selecting where to apply approxima-
tion and yet provide statistical guarantees.

Approximate circuit design and synthesis. In [10, 14, 22,
25] alternative and less accurate implementation specific hard-
ware blocks such as adders and multipliers are proposed.
Miao et al. [18] provides many Pareto-optimal designs al-
ternatives for adder and allows the designer to choose a variant
based on her energy, performance, and accuracy requirement.

6

While these ad-hoc approaches show significant promise for
approximation in the circuit level, they do not provide any
methodical and general approach for approximate hardware
design. However, Salsa [24], [16], [15] [17] propose a system-
atic approach to automatically apply approximate synthesis
techniques, generally gate pruning and timing speculation.
Salsa and [17] incorporate user-defines error constraints in
their synthesis techniques. While all these synthesis tech-
niques provide significant improvements, they do not focus on
providing hardware description semantics for methodical ap-
proximate hardware design and reuse. In fact, our framework
can benefit and leverage from all these techniques. Overall,
through extensions to Verilog, we propose a systematic de-
sign flow and its required abstractions to enable approximate
hardware design and reuse in larger scale hardware systems.
Our framework enables approximate synthesis techniques to
systematically be a part of the SoC design cycle.

9. Conclusion
While approximate circuits have been shown to provide signif-
icant energy and performance benefits, there is a clear need for
design flows and abstractions that enable larger scale approxi-
mate hardware design and reuse. In this paper, we proposed
design abstractions that enable system designers to implicitly
declare which parts of the design can be safely approximated.
All these abstractions are presented as concrete extensions
to the mainstream Verilog hardware descriptions language.
Further, our framework allows designers to override the ap-
proximation plan of an already designed approximate module
at reuse time and to explicitly control the quality tradeoffs.
We provide a static analysis that infers where to safely apply
approximation without violating safety guarantees. Through
this automatic analysis, we strike a balance between designer
involvement and automation of approximation in hardware
systems design. The flexible and automatic nature of our
framework provides a less arduous environment compared to a
mere extension of existing approximate programming models
for hardware design. We believe that our work forms a foun-
dation for widespread and methodical approximate hardware
design and reuse.

References
[1] B. Belhadj, A. Joubert, Z. Li, R. Héliot, and O. Temam, “Continuous

real-world inputs can open up alternative accelerator designs,” in ISCA,
2013.

[2] M. Carbin, S. Misailovic, and M. Rinard, “Verifying quantitative relia-
bility of programs that execute on unreliable hardware,” 2013.

[3] L. N. Chakrapani, P. Korkmaz, B. E. Akgul, and K. V. Palem, “Proba-
bilistic system-on-a-chip architectures,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), 2007.

[4] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in DAC, 2013.

[5] H. Cho, L. Leem, and S. Mitra, “Ersa: Error resilient system architec-
ture for probabilistic applications,” Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 2012.

[6] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An architec-
tural framework for software recovery of hardware faults,” in ISCA,
2010.

[7] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ISCA,
2011.

[8] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ACM SIGARCH
Computer Architecture News, 2012.

[9] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in MICRO, 2012.

[10] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“Impact: imprecise adders for low-power approximate computing,” in
ISLPED, 2011.

[11] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in ETS, 2013.

[12] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via
algorithmic noise-tolerance,” in ISLPED, 1999.

[13] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approxi-
mate arithmetic designs,” in DAC, 2012.

[14] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in VLSI, 2011.

[15] A. Lingamneni, K. K. Muntimadugu, C. Enz, R. M. Karp, K. V. Palem,
and C. Piguet, “Algorithmic methodologies for ultra-efficient inexact ar-
chitectures for sustaining technology scaling,” in Computing Frontiers,
2012.

[16] Y. Liu, R. Ye, F. Yuan, R. Kumar, and Q. Xu, “On logic synthesis for
timing speculation,” in ICCAD, 2012.

[17] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic syn-
thesis under general error magnitude and frequency constraints,” in
ICCAD, 2013.

[18] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and
synthesis of quality-energy optimal approximate adders,” in ICCAD,
2012.

[19] S. Narayanan, J. Sartori, R. Kumar, and D. L. Jones, “Scalable stochas-
tic processors,” in DATE, 2010.

[20] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “Sage:
self-tuning approximation for graphics engines,” in MICRO, 2013.

[21] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general
low-power computation,” ACM SIGPLAN Notices, 2011.

[22] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in DATE, 2010.

[23] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality
configurable circuits,” in DATE, 2013.

[24] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: systematic logic synthesis of approximate circuits,” in
DAC, 2012.

[25] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-
oriented approximate adder design and its application,” in ICCAD,
2013.

7

	Introduction
	Approximation Plan
	Approximate Interface
	Overriding Approximation and Bridging
	Approximation Safety Analysis
	Constraining Approximation
	Approximate Synthesis Process
	Related Work
	Conclusion

