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ABSTRACT
Graphics Processing Units (GPUs) can accelerate di-
verse classes of applications, such as recognition, gam-
ing, data analytics, weather prediction, and multimedia.
Many of these applications are amenable to approx-
imate execution. This application characteristic pro-
vides an opportunity to improve GPU performance and
efficiency. Among approximation techniques, neural ac-
celerators have been shown to provide significant per-
formance and efficiency gains when augmenting CPU
processors. However, the integration of neural accel-
erators within a GPU processor has remained unex-
plored. GPUs are, in a sense, many-core accelerators
that exploit large degrees of data-level parallelism in
the applications through the SIMT execution model.
This paper aims to harmoniously bring neural and GPU
accelerators together without hindering SIMT execu-
tion or adding excessive hardware overhead. We intro-
duce a low overhead neurally accelerated architecture
for GPUs, called NGPU, that enables scalable integra-
tion of neural accelerators for large number of GPU
cores. This work also devises a mechanism that controls
the tradeoff between the quality of results and the bene-
fits from neural acceleration. Compared to the baseline
GPU architecture, cycle-accurate simulation results for
NGPU show a 2.4× average speedup and a 2.8× average
energy reduction within 10% quality loss margin across
a diverse set of benchmarks. The proposed quality con-
trol mechanism retains a 1.9× average speedup and a
2.1× energy reduction while reducing the degradation
in the quality of results to 2.5%. These benefits are
achieved by less than 1% area overhead.
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1 Introduction
The diminishing benefits from CMOS scaling [1–3] has
coincided with an overwhelming increase in the rate of
data generation. Expert analyses show that in 2011,
the amount of generated data surpassed 1.8 trillion GB
and by 2020, consumers will generate 50× this stag-
gering figure [4]. To overcome these challenges, both
the semiconductor industry and the research commu-
nity are exploring new avenues in computer architecture
design. Two of the promising approaches are accelera-
tion and approximation. Among programmable accel-
erators, GPUs provide significant gains in performance
and efficiency. GPUs that were originally designed to
accelerate graphics functions, now are being used for a
wide range of applications, including recognition, learn-
ing, gaming, data analytics, weather prediction, molec-
ular dynamics, multimedia, scientific computing, and
many more. The availability of programming models
for GPUs and the advances in their microarchitecture
have played a significant role in their widespread adop-
tion. Many companies, such as Microsoft, Google, and
Amazon use GPUs to accelerate their enterprise ser-
vices. As GPUs play a major role in accelerating many
classes of applications, improving their performance and
efficiency is imperative to enable new capabilities and to
cope with the ever-increasing rate of data generation.

Many of the applications that benefit from GPUs
are also amenable to imprecise computation [6–9]. For
these applications, some variation in output is accept-
able and some degradation in the output quality is tol-
erable. This characteristic of many GPU applications
provides a unique opportunity to devise approximation
techniques that trade small losses in the quality of re-
sults for significant gains in performance and efficiency.
Among approximation techniques, neural acceleration
provides significant gains for CPUs [10–14] and may be
a good candidate for GPUs. Neural acceleration relies
on an automated algorithmic transformation that con-
verts an approximable segment of code1 to a neural net-
work. This transformation is called the neural transfor-
mation [10]. The compiler automatically performs the
neural transformation and replaces the approximable
segment with an invocation of a neural hardware that
1Approximable code is a segment that if approximated will
not lead to catastrophic failures in execution (e.g., segmen-
tation fault) and its approximation may only lead to grace-
ful degradation of the application output quality.
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Figure 1: Runtime and energy breakdown between neurally ap-
proximable regions and the regions that cannot be approximated.
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Figure 2: Slowdown with software-only neural transformation due
to the lack of hardware support for neural acceleration.

accelerates the execution of that segment.
To examine the potential benefits of neural accelera-

tion in GPUs, we first study2 its applicability to a di-
verse set of representative CUDA applications. Figure 1
illustrates the results and shows the breakdown of ap-
plication runtime and energy dissipation between neu-
rally approximable regions and the regions that cannot
be neurally approximated3. The neurally approximable
segments are the ones that can be approximated by a
neural network. On average, applications spend 56%
of their runtime and 59% of their energy in neurally
approximable regions. Some applications such as in-
versek2j and newton-raph spend more than 93% of their
runtime and energy in neurally approximable regions.
These encouraging results demonstrate the significant
potential of neural acceleration for GPU processors.

Why hardware acceleration? As previous work [15]
suggested, it is possible to apply neural transforma-
tion with no hardware modifications and replace the
approximable region with an efficient software imple-
mentation of the neural network that mimics the region.
We explored this possibility and the results are pre-
sented in Figure 2. On average, the applications suffer
from 3.2× slowdown. Only inversek2j and newton-raph,
which spend more than 93% of their time in the neu-
rally approximable region, see 3.6× and 1.6× speedup,
respectively. The slowdown with software implemen-
tation is due to (1) the overhead of fetching/decoding
the instructions, (2) the cost of frequent accesses to the
memory/register file, and (3) the overhead of executing
2Section 6.1 presents our experimental methodology with
the GPGPU-Sim cycle-accurate simulator.

3The annotation procedure is discussed in Section 2.

the sigmoid function. The significant potential of neural
transformation (Figure 1) and the slowdown with the
software-only approach (Figure 2) necessities designing
GPU architectures with integrated neural accelerators.

Why not reuse CPU neural accelerators? Previ-
ous work [10] proposes an efficient hardware neural ac-
celerator for CPUs. One possibility is to use CPU Neu-
ral Processing Unit (NPU) in GPUs. However, com-
pared to CPUs, GPUs contain (1) significantly larger
number of cores (SIMD lanes) that are also (2) simpler.
Augmenting each core with a NPU that harbors several
parallel processing engines and buffers imposes signifi-
cant area overhead. Area overhead of integrating NPUs
to a GPU while reusing SIMD lanes’ multiply-add units
is 31.2%. Moreover, neural networks are structurally
parallel. Hence, replacing a code segment with neural
networks adds structured parallelism to the thread. In
the CPU case, NPU’s multiple multiply-add units ex-
ploit this added parallelism to reduce the thread execu-
tion latency. GPUs, on the other hand, already exploit
data-level parallelism and leverage many-thread execu-
tion to hide thread latencies. One of the insights from
this work is that the added parallelism is not the main
source of benefits from neural acceleration in GPUs.
Therefore, neural acceleration in GPUs leads to a signif-
icantly different hardware design as compared to CPUs.

Contributions. To this end, the following are the ma-
jor contributions of this work.

• While this work is not the first to explore neural
acceleration, it is the first to evaluate tight integra-
tion of neural acceleration within GPU cores. Inte-
grating neural accelerators within GPUs is funda-
mentally different from doing so in a CPU because
of the hardware constraints and the many-thread
SIMT execution model in GPUs.

• We observe that, unlike CPUs, the added paral-
lelism is not the main source of benefits from neu-
ral acceleration in GPUs. The gains in GPUs come
from (1) eliminating the fetch/decode during neu-
ral execution, (2) reducing accesses to the memo-
ry/register file by storing the parameters and the
partial results in small buffers within the SIMD
lanes, and (3) implementing sigmoid as a lookup
table. This insight leads to a low overhead inte-
gration of neural accelerators to SIMD lanes by
limiting the number of ALUs in an accelerator to
only the one that is already in a SIMD lane.

• Through a combination of cycle-accurate simula-
tions and a diverse set of GPU applications from
different domains (finance, machine learning, im-
age processing, vision, medical imaging, robotics,
3D gaming, and numerical analysis), we rigorously
evaluate the proposed NGPU design. Compared
to the baseline GPU, NGPU achieves a 2.4× aver-
age speedup and a 2.8× average energy reduction
within a 10% quality loss margin. These benefits
are achieved with less than 1% area overhead.

• We also devise a mechanism that controls the trade-
off between the quality loss and performance and
efficiency gains. The quality control mechanism



retains a 1.9× average speedup and a 2.1× energy
reduction while reducing the quality loss to 2.5%.

2 Neural Transformation for GPUs
To enable the integration of neural accelerators within
GPUs, the first step is to develop a compilation work-
flow that automatically performs the neural transfor-
mation on GPU code. We also need to develop a pro-
gramming interface that enables developers to delineate
approximable regions as candidates for the neural trans-
formation.
2.1 Safe Programming Interface
Any practical approximation technique, including ours,
needs to provide execution safety guarantees. That is,
approximation should never lead to catastrophic failures
such as out-of-bound memory accesses. In other words,
approximation should never affect critical data and op-
erations. The criticality of data and operations is a
semantic property of the program and can only be iden-
tified by the programmer. The programming language
must therefore provide a mechanism for programmers to
specify where approximation is safe. This requirement
is commensurate with prior work on safe approximate
programming languages such as EnerJ [16], Rely [17],
FlexJava [18], and Axilog [19]. To this end, we ex-
tend the CUDA programming language with a pair of
#pragma annotations that mark the start and the end
of a safe-to-approximate region of GPU code. The fol-
lowing example illustrates these annotations.
#pragma ( begin approx , ”min max ”)
mi = min ( r , min (g , b ) ) ;
ma = max ( r , max (g , b ) ) ;
r e s u l t = ( (ma + mi ) > 127 ∗ 2) ? 255 : 0 ;

#pragma ( end approx , ”min max ”)

This segment of the binarization benchmark is approx-
imable and is marked as a candidate for transforma-
tion. The #pragma(begin_approx,"min_max") marks
the segment’s beginning and names it the "min_max"
segment. The #pragma(end_approx,"min_max") marks
the end of the segment that was named "min_max".
2.2 Compilation Workflow
As discussed, the main idea of neural algorithmic trans-
formation is to learn the behavior of a code segment
using a neural network and then replace the segment
with an invocation of an efficient neural hardware. To
implement this algorithmic transformation, the com-
piler needs to (1) identify the inputs and outputs of
the segment, (2) collect the training data by observing
(logging) the inputs and outputs, (3) find and train a
neural network that mimics the observed behavior, and
finally (4) replace that region of code with instructions
that configure and invoke the neural hardware. These
steps are illustrated in Figure 3. Our compilation work-
flow is similar to the one described in prior work that
targets neural acceleration in CPUs [10]. However, we
specialize these steps for GPU applications and add the
automatic input/output identification step to the compi-
lation workflow to further automate the transformation.

1 Input/output identification. To train a neural
network that mimics a code segment, the compiler needs

to collect the input-output pairs that represent the func-
tionality of the region. The first step is identifying the
inputs and outputs of the delineated segment. The com-
piler uses a combination of live variable analysis and
Mod/Ref analysis [20] to automatically identify the in-
puts and outputs of the annotated segment. The inputs
are the intersection of live variables at the location of
#pragma(begin_approx,...) with the set of variables
that are referenced within the segment. The outputs
are the intersection of live variables at the location of
#pragma(end_approx,...) with the set of variables
that are modified within the segment. In the previous
example, this analysis identifies r, g, and b as the inputs
to the region and result as the output.

2 Code observation. After identifying the inputs
and outputs of the segment, the compiler instruments
these inputs and outputs to log their values in a file as
the program runs. The compiler then runs the program
with a series of representative input datasets (such as
the ones from a program test suite) and logs the pairs of
input-output values. The collected set of input-output
values constitutes the training data that captures the
behavior of the segment.

3 Topology selection and training. This step needs
to both find a topology for the neural network and
train it. In finding the topology, the objective is to
strike a balance between the network’s accuracy and its
efficiency. Theoretically, a larger, more complex net-
work offers better accuracy potential but is likely to be
slower and less efficient. However, enlarging the net-
work does not improve its accuracy beyond a certain
point. Thus, the compiler considers a search space for
the neural topology and picks the smallest network that
delivers comparable accuracy to the largest network in
the space. The neural network of choice is Multilayer
Perceptron (MLP) that consists of a fully-connected set
of neurons organized into layers: the input layer, a num-
ber of hidden layers, and the output layer. The number
of neurons in the input and output layers is fixed and
corresponds to the number of inputs and outputs of the
code segment. The problem is finding the number of
hidden layers and the number of neurons in each hid-
den layer.

The space of possible topologies is infinitely large.
Therefore, we restrict the search space to the neural
networks with at most two hidden layers. The num-
ber of neurons per hidden layer is also restricted to
powers of two, up to 32 neurons. These choices limit
the search space to 30 possible topologies. The maxi-
mum number of hidden layers and the maximum neu-
rons per hidden layer are compilation options and can
be changed if needed. These neural networks are trained
independently in parallel. To find the best fitting neu-
ral network topology, we partition the application input
datasets into a training dataset (2

3 of the programmer-
provided application input datasets), and a selection
dataset, (the remaining 1

3 ). The training datasets are
used during training, and the selection datasets are used
to select the final neural network topology based on
the application’s desired quality loss. Note that we use
completely separate input datasets to measure the final
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Figure 3: Overview of the compilation workflow for neural acceleration in GPU throughput processors.

quality loss in Section 6.
To train the networks for neural acceleration, we use

the standard backpropagation [21] algorithm. Our com-
piler performs 10-fold cross-validation for training each
neural network. The output from this phase consists of
a neural network topology – specifying the number of
layers and the number of neurons in each layer – along
with the weights for the inputs of each neuron that are
determined by the backpropagation training algorithm.

4 Code generation. After identifying the neural net-
work and training it, the compiler replaces the code seg-
ment with special instructions to send the inputs to the
neural accelerator and retrieve the results. The com-
piler also configures the neural accelerator. The con-
figuration includes the weights and the schedule of the
operations within the accelerator. This information is
loaded into the integrated neural accelerators once when
the program loads for execution.

3 Instruction Set Architecture Design
To enable neural acceleration, the GPU ISA should pro-
vide three instructions: (1) one for sending the inputs
to the neural accelerator, (2) one for receiving outputs
from the neural accelerator, and finally (3) one for send-
ing the accelerator configuration and the weights. To
this end, we extend the PTX ISA as follows:
1. send.n_data %r: This instruction sends the value of

register %r to the neural accelerator as an input.
2. recv.n_data %r: This instruction retrieves a value

from the accelerator and writes it to the register %r.
3. send.n_cfg %r: This instruction sends the value of

register %r to the accelerator and indicates that the
value is for configuration.
We use PTX ISA 4.2 which supports vector instruc-

tions that can read or write two or four registers instead
of one. We take advantage of this feature and intro-
duce two vector versions for each of our instructions.
The send.n_data.v2 {%r0, %r1} sends two register
values to the accelerator and a single send.n_data.v4
{%r0, %r1, %r2, %r3} sends the value of four regis-
ters to the neural accelerator. The vector versions for
recv.n_data and send.n_cfg have similar semantics.
These vector versions reduce the number of instructions
that need to be fetched and decoded to communicate
with the neural accelerator. This reduction lowers the
overhead of invoking the accelerator and provides more
opportunities for speedup and efficiency gains.

As follows, these instructions will be executed in SIMT
mode as other GPU instructions. GPU applications
typically consist of kernels and GPU threads execute
the same kernel code. The neural transformation ap-
proximates segments of these kernels. That is, each

corresponding thread will contain the aforementioned
instructions to communicate with the neural accelera-
tor. Each thread only applies different input data to
the same neural network. GPU threads are grouped
into cooperative thread arrays (a unit of thread blocks).
The threads in different thread blocks are independents
and can be executed in any order. The thread block
scheduler maps them to GPU processing cores called
the streaming multiprocessors (SMs). The SM divides
threads of a thread block into smaller groups called
warps, typically of size 32 threads. All the threads
within a warp execute the same instruction in lock-step.
The three new instructions, send.n_data, recv.n_data,
and send.n_cfg follow the same SIMT model. That is,
executing each of these instructions, conceptually, com-
municates data with 32 parallel neural accelerators.

A typical GPU architecture, such as Fermi [22], con-
tains 15 SMs, each with 32 SIMD lanes. That is, to
support hardware neural acceleration, 480 neural accel-
erators need to be integrated. Hence the GPU-specific
challenge is designing a hardware neural accelerator that
can be replicated many times within the GPU without
imposing extensive hardware overhead.

4 Accelerator Design and Integration
To describe our neural accelerator design and its inte-
gration into the GPU architecture, we assume a GPU
processor based on the Nvidia Fermi. Fermi’s SMs con-
tain 32 double-clocked SIMD lanes that execute two half
warps (16 threads) simultaneously, where each warp ex-
ecutes in lock-step. Ideally, to preserve the data-level
parallelism across the threads and preserve the default
SIMT execution model, each SM needs to be augmented
with 32 neural accelerators. Therefore, the objective is
to design a neural accelerator that can be replicated 32
times within each SM for a minimal hardware overhead.
These two requirements fundamentally change the de-
sign space of the neural accelerator from prior work that
aims at accelerating single-thread cores with only one
accelerator.

A näıve approach is to replicate and add the previ-
ously proposed CPU neural accelerator to each SM [10].
These CPU specific accelerators harbor multiple pro-
cessing engines and contain significant amount of buffer-
ing for weights and control. Such a design not only
imposes significant hardware overhead, but also is an
overkill for data-parallel GPU architectures as our re-
sults in Section 6.3 show. Instead, we tightly integrate
a GPU specific neural network in every SIMD lane.

The neural algorithmic transformation uses Multi-
layer Perceptrons (MLPs) to approximate CUDA code
segments. As Figure 5a depicts, an MLP consists of a
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Figure 4: SM pipeline after integrating the neural accelerator
within SIMD lanes. The added hardware is highlighted in gray.

network of neurons arranged in multiple layers. Each of
the neurons in one layer are connected to all of the neu-
rons in the next layer. Each neuron input is associated
with a weight value that is generated after training. All
neurons are identical and each neuron computes its out-
put (y) based on y = sigmoid(

∑
i(wi×xi)), where xi is

a neuron input and wi is the input’s associated weight.
Therefore, all the computations of a neural network are
a set of multiply-add operations followed by the non-
linear sigmoid operation. The neural accelerator only
needs to support these two operations.
4.1 Integrating the Neural Accelerator
Each SM has 32 SIMD lanes, divided into two 16-lane
groups that execute two half warps simultaneously. The
ALU in each lane supports the floating point multiply-
add operation. We reuse these ALUs while enhancing
the lanes for neural computation. We leverage the ex-
isting SIMT execution model to minimize the hardware
overhead for the weights and control. We refer to the
resulting SIMD lanes as neurally enhanced SIMD lanes.

In Figure 4, the added hardware components are num-
bered and highlighted in gray. The first component
is the Weight FIFO ( 1 ) that is a circular buffer and
stores the synaptic weights. Since all of the threads
are approximated by the same neural network, we only
add one Weight FIFO, which is shared across all SIMD
lanes. The Weight FIFO has two read ports corre-
sponding to the two 16 SIMD lanes that execute two
half warps. Each port supplies a weight to 16 ALUs.
The second component is the Controller ( 2 ) which
controls the execution of the neural network across the
SIMD lanes. Again, the Controller is shared across 16
SIMD lanes that execute a half warp (two controllers
per SM). The Controller follows the SIMT pattern of
execution for the neural computation and enables the
ALUs to perform the computation of the same input of
the same neuron in the network.

We augment each of the SIMD lanes with an Input
FIFO ( 3 ) and an Output FIFO ( 4 ). The Input FIFO
stores the neural network inputs. The Output FIFO
stores the output of the neurons including the output
neurons that generate the final output. These two are
small FIFO structures that are replicated for each SIMD
lane. Each of the SIMD lanes also harbors a Sigmoid
Unit ( 5 ) that contains a read-only lookup table. This
lookup table implements the nonlinear sigmoid function
and is synthesized as combinational logic to reduce the
area overhead. Finally, the Acc Reg ( 6 ), which is the
accumulator register in each of the SIMD lanes, retains
the partial results of the sum of products (

∑
i(wi×xi))

before passing it to the Sigmoid Unit.
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(c) Accelerated Execution on the Enhanced SM
Figure 5: (a) Neural network replacing a segment of a GPU code.
(b) Schedule for the accelerated execution of the neural network.
(c) Accelerated execution of the GPU code on the enhanced SM.

One of the advantages of this design is that it lim-
its all major modifications to the execution part of the
SIMD lanes (pipelines). There is no need to change any
other part of the SM except for adding support for de-
coding the ISA extensions that communicate data to the
accelerator (i.e., input and output buffers). Scheduling
and issuing these instructions are similar to arithmetic
instructions and do not require specific changes.
4.2 Executing Neurally Transformed Threads
Figure 5c illustrates the execution of a neurally trans-
formed warp, which contains normal precise and special
approximate (i.e., send.n_data/recv.n_data) instruc-
tions, on its neurally enhanced SIMD lanes. The other
simultaneously executing warp (similarly contains both
normal and special instructions) is not shown for clar-
ity. In the first phase ( 1 ), SIMD lanes execute the
precise instructions as usual before reaching the first
send.n_data instructions. In the second phase ( 2 ),
SIMD lanes execute the two send.n_data instructions
to copy the neural network inputs from the register file
to their input buffers. These instructions cause SIMD
lanes to switch to the neural mode. In the third phase
( 3 ), the enhanced SIMD lanes perform the neural com-
putation and store the results in their output buffers.



At the same time, the SM issues recv.n_data, but since
the output of the neural network is not ready yet, the
SM stops issuing the next instruction and waits for the
neurally-enhanced SIMD lanes to finish computing the
neural network output. In the fourth phase ( 4 ), once
the neural network output is ready, recv.n_data in-
struction copies the results from the output buffer to
the register file and then in the fifth phase ( 5 ) normal
execution resumes. As there is no control divergence
or memory access in the neural mode, our design does
not swap the running warp with another warp in the
neural mode to avoid the significant overhead of ded-
icated input/output buffers or control logic per active
warp (SMs support 48 ready-to-execute warps).
4.3 Orchestrating Neurally Enhanced Lanes
To efficiently execute neural networks on the neurally
enhanced SIMD lanes, the compiler needs to create a
static schedule for the neural computation and arrange
the weights in proper order. This schedule and the pre-
ordered weights are encoded in the program binary and
are preloaded to the Weight FIFO (Figure 4 1 ) when
the program loads for execution. The compiler gener-
ates the execution schedule based on the following steps:
1. The computations for the neurons in each layer are

dependent on the output of the neurons in the previ-
ous layer. Thus, the compiler first assigns a unique
order to the neurons starting from the first hidden
layer down to the output layer. This order deter-
mines the execution of the neurons. In Figure 5a.
n0, n1, and n2 show this order.

2. Then, for each neuron, the compiler generates the
order of the multiply-add operations, which are fol-
lowed by a sigmoid operation. This schedule is shown
in Figure 5b for the neural network in Figure 5a. The
phase ( 3 ) of Figure 5c illustrates how the neurally
enhanced SIMD lanes execute this schedule in SIMT
mode while sharing the weights and control.
The schedule that is presented in Figure 5b consti-

tutes the most of the accelerator configuration and the
order in which the weights will be stored in Weight
FIFO ( 1 in Figure 4). For each accelerator invocation,
SIMD lanes go through these weights in lock-step and
perform the neural computation autonomously without
engaging the other parts of the SM.

5 Controlling Quality Tradeoffs
To be able to control the quality tradeoffs, any approxi-
mation technique including ours, needs to expose a qual-
ity knob to the compiler and/or runtime system. The
knob for our design is the accelerator invocation rate.
That is the fraction of the warps that are offloaded to
the neural accelerator. The rest of the warps will exe-
cute the original precise segment of code and generate
exact outputs. In the default case, without any qual-
ity control, all the warps that contain the approximable
segment will go through the neural accelerator which
translates to 100% invocation rate. With quality con-
trol, only a fraction of the warps will go through the
accelerator. Naturally, the higher the invocation rate,
the higher the benefits and the lower the quality.

For a given quality target, the compiler predetermines

the invocation rate by examining the output quality loss
on a held-out evaluation input dataset. Starts with
100% invocation rate, the compiler gradually reduces
the invocation rate until the quality loss is less than the
quality target. During the runtime, a quality monitor,
similar to the one proposed in SAGE [6], stochastically
checks the output quality of the application and adjusts
the invocation rate.

We also investigated a more sophisticated approach
that uses another neural network to filter out invoca-
tions of the accelerator that significantly degrade qual-
ity. The empirical study suggested that the simpler ap-
proach of reducing the invocation rate provides similar
benefits.

6 Evaluation
We evaluate the benefits of the proposed architecture
across different bandwidth and accelerator settings. We
use a diverse set of applications, cycle-accurate simu-
lation, logic synthesis, and consistent detailed energy
modeling.
6.1 Applications and Neural Transformation
Applications. As Table 1 shows, we use a diverse
set of approximable GPU applications from the Nvidia
SDK [23] and Rodinia [24] benchmark suites to evaluate
the integration of neural accelerators within GPU archi-
tectures. We added three more applications to the mix
from different sources [25–27]. As shown, the bench-
marks represent workloads from finance, machine learn-
ing, image processing, vision, medical imaging, robotics,
3D gaming, and numerical analysis. We did not reject
any benchmarks due to their performance, energy, or
quality shortcomings.

Annotations. As described in Section 2.1, the CUDA
source code for each application is annotated using the
#pragma directives. We use theses directives to de-
lineate a region within a CUDA kernel that has fixed
number of inputs/outputs and is safe to approximate.
Although it is possible and may boost the benefits to
annotate multiple regions, we only annotate one region
that is easy to identify and is frequently executed. We
did not make any algorithmic changes to enable neural
acceleration.

As illustrated by the numbers of function calls, con-
ditionals, and loops in Table 1, these regions exhibit a
rich and diverse control flow behavior. For instance, the
target region in inversk2j has three loops and five condi-
tionals. Other regions similarly have several loops/con-
ditionals and function calls. Among these applications,
the region in jmeint has the most complicated control
flow with 37 if/else statements. The regions are also
diverse in size and vary from small (binarization with
27 PTX instructions) to large (jmeint with 2,250 PTX
instructions).

Evaluation/training datasets. As illustrated in Ta-
ble 1, the datasets that are used for measuring the
quality, performance, and energy are completely dis-
joint from the ones used for training the neural net-
works. The training inputs are typical representative
inputs (such as sample images) that can be found in
application test suites. For instance, we use the image



Table 1: Applications, accelerated regions, training and evaluation datasets, quality metrics, and approximating neural networks.

Descrip(on Source Domain Quality3
Metric

#3of3
Func(on3
Calls

#3of3
Loops

#3of3
ifs/
elses

#3of3
PTX3
Insts.

Training3
Input3Set

Evalua(on3
Input3Set

Digital3NPU
Neural3
Network3
Topology

Quality3
Loss

binariza(on Image&binariza,on Nvidia&SDK
Image&

Processing
Image&Diff 1 0 1 27

Three&512x512&

pixel&images

Twenty&2048x2048&

pixel&images
3&H>&4&H>&2&H>&1 8.23%

blackscholes Op,on&pricing Nvidia&SDK Finance
Avg.&Rel.&

Error
2 0 0 96 8,192&op,ons 262,144&op,ons 6&H>&8&H>&1 4.35%

convolu(on Data&filtering&

opera,on&
Nvidia&SDK

Machine&

Learning

Avg.&Rel.&

Error
0 2 2 886

8,192&data&

points

262,144&data&

points
17&H>&2&H>&1 5.25%

inversek2j Inverse&kinema,cs&

for&2Hjoint&arm

CUDAHBased&

Kinema,cs
Robo,cs

Avg.&Rel.&

Error
0 3 5 132

8,192&2D&

coordinates

262,144&2D&

coordinates
2&H>&16&H>&3 8.73%

jmeint Triangle&intersec,on&

detec,on

jMonkey&

Game&

Engine

3D&Gaming Miss&Rate 4 0 37 2,250
8,192&3D&

coordinates

262,144&3D&

coordinates
18&H>&8&H>&2& 17.32%

laplacian Image&sharpening&

filter
Nvidia&SDK

Image&

Processing
Image&Diff 0 2 1 51

Three&512x512&

pixel&images

Twenty&2048x2048&

pixel&images
9&H>&2&H>&1 6.01%

meanfilter Image&smoothing&

filter
Nvidia&SDK

Machine&

Vision
Image&Diff 0 2 1 35

Three&512x512&

pixel&images

Twenty&2048x2048&

pixel&images
7&H>&4&H>&1 7.06%

newtonMraph NewtonHRaphson&

equa,on&solver

Likelihood&

Es,mators

Numerical&

Analysis

Avg.&Rel.&

Error
2 2 1 44

8,192&cubic&

equa,ons

262,144&cubic&

equa,ons
5&H>&2&H>&1 3.08%

sobel Edge&detec,on Nvidia&SDK
Image&

Processing
Image&Diff 0 2 1 86

Three&512x512&

pixel&images

Twenty&2048x2048&

pixel&images
9&H>&4&H>&1 5.45%

srad Speckle&reducing&

anisotropic&diffusion
Rodinia

Medical&

Imaging
Image&Diff 0 0 0 110

Three&512x512&

pixel&images

Twenty&2048x2048&

pixel&images
5&H>&4&H>&1 7.43%

of lena, peppers, and mandrill for applications that oper-
ate on image data. Since the regions are frequently exe-
cuted, even one application input provides large number
of training data. For example, in sobel a 512×512 pixel
image generates 262,144 training data elements.

Neural networks. The“Neural Network Topology”col-
umn shows the topology of the neural network that re-
places the region of code. For instance, the topology for
blackscholes is 6 → 8 → 1. That is the neural network
has 6 inputs, one hidden layer with 8 neurons, and 1
output neuron. These topologies are automatically dis-
covered by our compiler and we use the 10-fold cross
validation to train the neural networks. As the results
suggest, different applications require different topolo-
gies. Therefore, the SM architecture should be changed
in a way that is reconfigurable and can accommodate
different topologies.

Quality. We use application-specific quality metrics,
shown in Table 1, to assess the quality of each applica-
tion’s output after neural acceleration. In all cases, we
compare the output of the original precise application
to the output of the neurally accelerated application.
For blackscholes, inversek2j, newton-raph, and srad that
generate numeric outputs, we measure the average rel-
ative error. For jmeint that determines whether two
3D triangles intersect, we report the misclassification
rate. The convolution, binarization, laplacian, meanfilter,
and sobel that produce image outputs, we use the av-
erage root-mean-square image difference. In Table 1,
the“Quality Loss”column reports the whole-application
quality degradation based on the above metrics. This
loss includes the accumulated errors due to repeated ex-
ecution of the approximated region. The quality loss in
Table 1 represents the case where all of the dynamic
threads with the safe-to-approximate region are neu-
rally accelerated.

Even with 100% invocation rate, the quality loss with
neural acceleration is less than 10% except in the case

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Error

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f O
ut

pu
t E

le
m

en
ts

binarization
blackscholes
convolution
inversek2j
jmeint

laplacian
meanfilter
newton-raph
sobel
srad

Figure 6: Cumulative distribution function (CDF) plot of the appli-
cations output quality loss. A point (x, y) indicates that y fraction
of the output elements see quality loss less than or equal to x.

of jmeint. The jmeint application’s control flow is very
complex and the neural network is not able to cap-
ture all the corner cases to achieve below 10% quality
loss. These results are commensurate with prior work
on CPU-based neural acceleration [11, 13]. Prior work
on GPU approximation such as SAGE [6] and Para-
prox [7] reports similar quality losses in the default set-
ting. EnerJ [16] and Truffle [28] show less than 10%
loss for some applications and even 80% loss for oth-
ers. Green [29] and loop perforation [30] show less than
10% error for some applications and more than 20% for
others. Later, we will discuss how to use the invocation
rate to control the quality tradeoffs, and achieve even
lower quality loss when desired.

To better illustrate the application quality loss, Fig-
ure 6 shows the Cumulative Distribution Function (CDF)
plot of the final quality loss for each element of the out-
put. Each application output is a collection of elements
– an image consists of pixels; a vector consists of scalars;
etc. The loss CDF shows the distribution of output
quality loss among the output elements and shows that
very few output elements see a large loss. As shown,
the majority of output elements (from 78% to 100%)
see a loss less than 10%



Table 2: GPU microarchitectural parameters.
System Overview: No. of SMs: 15, Warp Size: 32 threads/warp; Shader
Core Config: 1.4 GHz, GTO scheduler [35], 2 schedulers/SM; Resources /
SM: No. of Warps: 48 Warps/SM, No. of Registers: 32,768; Interconnect:
1 crossbar/direction (15 SMs, 6 MCs), 700 MHz; L1 Data Cache: 16KB,
128B line, 4-way, LRU; Shared Memory: 48KB, 32 banks; L2 Unified Cache:
768KB, 128B line, 16-way, LRU; Memory: 6 GDDR5 Memory Controllers,
924 MHz, FR-FCFS [36]; Bandwidth: 177.4 GB/sec.

6.2 Experimental Setup
Cycle-accurate simulations. We use the GPGPU-
Sim cycle-accurate simulator version 3.2.2 [31]. We
modified the simulator to include our ISA extensions
and include the extra microarchitectural modifications
necessary for the integration of neural accelerators within
GPUs. The overhead of ISA extensions that commu-
nicate with the accelerator are modeled. For baseline
simulations that do not include any approximation or
acceleration, we use the unmodified GPGPU-Sim. We
use one of the GPGPU-Sim’s default configurations that
closely models the Nvidia GTX 480 chipset with Fermi
architecture. Table 2 summarizes the microarchitec-
tural parameters of the chipset. We run the applications
to completion. We use NVCC 4.2 with -O3 to enable ag-
gressive compiler optimizations. Moreover, we optimize
the number of thread blocks and number of threads-
per-block of each kernel for the simulated hardware.

Energy modeling and overheads. To measure GPU
energy, we use GPUWattch [32], which is integrated
with GPGPU-Sim. To measure the accelerator energy,
we also generate its event log during the cycle-accurate
simulations . Our energy evaluations use a 40 nm pro-
cess node and 1.4 GHz clock frequency. Neural accelera-
tion requires the following changes to the SM and SIMD
lanes and are modeled using McPAT [33] and CACTI
6.5 [34]. In each SM, we add a 2 KB weight FIFO.
The extra input/output FIFO’s are 256 bytes per then
lane. The sigmoid LUT which is added to each SIMD
lane contains 2048 32-bit entries. Since GPUWattch
also uses McPAT and CACTI, our added energy mod-
els, which use the same tools, provide a unified and
consistent framework for energy measurement.
6.3 Experimental Results
Performance and energy benefits. Figure 7a shows
the whole application speedup when all the invocations
of the approximable region are accelerated with the
neural accelerator. The remaining part (i.e., the non-
approximable region) is executed normally. The results
are normalized to the baseline where the entire applica-
tion is executed on the GPU with no acceleration. The
highest speedup is observed for newton-raph (14.3×) and
inversek2j (9.8×), where the bulk of execution time is
spent on approximable parts (see Figure 1). The low-
est speedup is observed for blackscholes and srad (about
2% and 5%) which are bandwidth-hungry applications.
While a considerable fraction of the execution time in
blackscholes and srad is spent in the approximate region
(See Figure 1), the speedup of accelerating these two
applications is modest. That is because these applica-
tions use most of the off-chip bandwidth, even when
they run on GPU (without acceleration). Due to band-
width limitation, neural acceleration cannot reduce the
execution time. Below, we study the effect of increasing
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Figure 7: NGPU whole application speedup and energy reduction.

the off-chip bandwidth on these two applications and
show that with reasonable improvement in bandwidth,
even these benchmarks observe significant benefits. On
average, the evaluated applications see a 2.4× speedup
through neural acceleration.

Figure 7b shows the energy reduction for each bench-
mark as compared to the baseline where the whole bench-
mark is executed on GPU. Similar to the speedup, the
highest energy saving is achieved for inversek2j (18.9×)
and newton-raph (14.8×), where bulk of the energy is
consumed for the execution of approximable parts (see
Figure 1). The lowest energy saving is obtained on
jmeint (30%) as for this application, the fraction of en-
ergy consumed on approximable parts is relatively small
(See Figure 1). On average, the evaluated applications
see a 2.8× reduction in energy usage.

The quality loss when all the invocations of the ap-
proximable region get executed on neural accelerators
(i.e., the highest quality loss) is shown in Table 1 (la-
beled Quality Loss). We study the effects of our quality
control mechanism for trading off performance and en-
ergy savings for better quality later in this section.

Area overhead. To estimate the area overhead, we
synthesize the sigmoid unit using Synopsys Design Com-
piler and NanGate 45 nm Open Cell library, targeting
the same frequency as the SMs. We extract the area of
the buffers and FIFOs from CACTI. Overall, the added
hardware requires about 0.27 mm2. We estimate the
area of the SMs by inspecting the die photo of GTX
480 that implements the Fermi architecture. Each SM
is about 22 mm2 and the die area is 529 mm2 with 15
SMs. The area overhead per SM is approximately 1.2%
and the total area overhead is 0.77%. The low area over-
head is because our architecture uses the same ALUs
that are already available in each of the SIMD lanes,
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Figure 8: Breakdown of (a) runtime and (b) energy consumption
between non-approximable and approximable regions normalized
to the runtime and energy consumption of the GPU, respectively.
For each application, the first (second) bar shows the normalized
value when the application is executed on the GPU (NGPU).

shares the weight buffer across the lanes, and imple-
ments the sigmoid unit as a read-only lookup table, en-
abling the synthesis tool to optimize its area. This low
area overhead confirms the scalability of our design.

Opportunity for further improvements. To ex-
plore the opportunity for further improving the execu-
tion time by making the neural accelerator faster, Fig-
ure 8a shows the time breakdown of approximable and
non-approximable parts of applications when applica-
tions run on GPU (no acceleration) and NGPU (neu-
rally accelerated GPU), normalized to the case where
the application runs on GPU (no acceleration). As Fig-
ure 8a depicts, NGPU is effective at reducing the time
that is spent on approximable parts for all but two
applications: blackscholes and srad. These two appli-
cations use most of the bandwidth of the GPU, and
consequently, do not benefit from the accelerators due
to the bandwidth wall. The rest of the applications
significantly benefit from accelerators. On some ap-
plications (e.g., binarization, laplacian, and sobel), the
execution time of approximable parts on NGPU is sig-
nificantly smaller than the execution time of the non-
approximable parts. Hence, no further benefits are pos-
sible with faster accelerators. For the rest of the ap-
plications, the execution time of approximable parts on
NGPU, although considerably reduced, is comparable to
and sometimes exceeds (e.g., inversek2j) the execution
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Figure 10: Memory bandwidth consumption when the applications
are executed on GPU (first bar) and NGPU (second bar).

time of non-approximable parts. Therefore, there is a
potential to further speed these applications up with
faster accelerators.

We similarly study the opportunity to further re-
duce the energy usage with more energy-efficient ac-
celerators. Figure 8b shows the energy breakdown be-
tween approximable and non-approximable parts when
applications run on GPU and NGPU, normalized to the
case where the application runs on GPU. These results
clearly shows that neural accelerators are effective in
reducing the energy usage of applications when execut-
ing the approximable parts. For many of the applica-
tions, the energy that is consumed for running approx-
imable parts is modest as compared to the energy that is
consumed for running the non-approximable parts (e.g.,
blackscholes, convolution, jmeint, etc.). For these appli-
cations, a more energy-efficient neural accelerator may
not brings further energy savings. However, there are
some applications, such as binarization, laplacian, and
sobel, for which the fraction of energy that is consumed
on neural accelerators is comparable to the fraction of
energy consumed on non-approximable parts. For these
applications further energy saving is possible with a
more energy-efficient implementation of neural acceler-
ators (e.g., analog neural accelerators [11]).

Sensitivity to accelerator speed. To study the ef-
fects of accelerators’ speed on performance gains, we
vary the latency of neural accelerators and measure the
overall speedup as shown in Figure 9. We decrease the
delay of the default accelerators by a factor of 2 and 4
and also include an ideal neural accelerator with zero
latency. Moreover, we show the speedup numbers when
the latency of the default accelerators increases 2×, 4×,
8× and 16×. Unlike Figure 8a that suggests perfor-
mance improvement for some applications by benefit-
ing from faster accelerators, Figure 9 shows virtually no
speedup benefit by making neural accelerators faster be-
yond what they offer in the default design. Even making
accelerators slower by a factor of two does not consider-
ably change the speedup. Slowing down the accelerators
by a factor of four, many applications observe perfor-
mance loss. (e.g., laplacian).

To explain this behavior, Figure 10 shows the band-
width usage of GPU and NGPU across all applications.
While on the baseline GPU, only two applications use
more than 50% of the off-chip bandwidth (i.e., blacksc-
holes and srad), on NGPU, many applications use more
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Figure 11: The total application speedup with NGPU for different off-chip memory communication bandwidth normalized to the execution
with NGPU with default bandwidth. The default bandwidth is 177.4 GB/s.

than 50% of their off-chip bandwidth (e.g., inversek2j,
jmeint, and newton-raph). As applications run faster
with accelerators, the rate at which they access data
increases, which puts pressure on off-chip bandwidth.
This phenomena shifts the bottleneck of execution time
from computation to data delivery. As computation is
no longer the major bottleneck after acceleration, speed-
ing up thread execution beyond a certain point has marg-
inal effect on the overall execution time. Even increas-
ing the accelerator speed by a factor of two (e.g., by
adding more multiply-and-add units) has marginal ef-
fect on execution time. We leverage this insight to sim-
plify the accelerator design and reuse available ALUs in
the SMs as described is Section 4.1.

Sensitivity to off-chip bandwidth. To study the ef-
fect of off-chip bandwidth on the benefits of NGPU, we
increase the off-chip bandwidth up to 8× and report the
performance numbers. Figure 11 shows the speedup of
NGPU with 2×, 4×, and 8× bandwidth over the base-
line NGPU (i.e., 1× bandwidth) across all benchmarks.
As NGPU is bandwidth limited for many applications
(See Figure 10), we expect a considerable improvement
in performance as the off-chip bandwidth increases. In-
deed, Figure 11 shows that bandwidth-hungry appli-
cation (i.e., blackscholes, inversek2j, jmeint, and srad)
observe speedup of 1.5× when we double the off-chip
bandwidth. After doubling the off-chip bandwidth, no
application remains bandwidth limited, and therefore,
increasing the off-chip bandwidth to 4× and 8× has lit-
tle effect on performance. It may be possible to achieve,
the 2× extra bandwidth by using data compression [37]
with little changes to the architecture of existing GPUs.
While technologies like 3D DRAM that offer signifi-
cantly more bandwidth (and lower access latency) can
be useful, they are not necessary for providing the off-
chip bandwidth requirements of NGPU for the range of
applications that we studied. However, even without
any of these likely technology advances (compression
or 3D stacking), the NGPU provides significant benefits
across most of the applications.

Controlling quality tradeoffs. To study the effect
of our quality control mechanism, Figure 12 shows the
energy-delay product of NGPU normalized to the energy-
delay product of the baseline GPU (without accelera-

binarization blackscholes convolution
inversek2j jmeint laplacian
meanfilter newton-raph sobel
srad geomean

Quality Loss

Im
p

ro
v
e

m
e

n
t 
in

 E
n

e
rg

y
  
  
D

e
la

y
×

1×

2×

3×

5×

10×

20×

100×

110×

1000×

0.0% 2.5% 5.0% 10.0%7.5%

60×

Figure 12: Energy×delay benefits vs output quality (log scale).

tion) when the output quality loss changes from 0%
to 10%. The quality control mechanism enables nav-
igating the tradeoff between the quality loss and the
gains. All applications see declines in benefits when in-
vocation rate decreases (i.e., output quality improves).
Due to the Amdahl’s Law effect, the applications that
spend more than 90% of their execution in the approx-
imable segment (inversek2j and newton-raph), see larger
declines in benefits when invocation rate decreases. How-
ever, even with 2.5% quality loss, the average speedup
is 1.9× and the energy savings is 2.1×.

Comparison with prior CPU neural acceleration.
Prior work [10] has explored improving CPU perfor-
mance and efficiency with NPUs. Since NPUs offer con-
siderably higher performance and energy efficiency with
CPUs, we compare our NGPU proposal to CPU+NPU
and GPU+NPU. For the evaluation, we use MARSSx86
cycle-accurate simulator for the single-core CPU simula-
tions with a configuration that resembles Intel Nehalem
(3.4 GHz with 0.9 V at 45 nm) and is the same as the
setup used in the most recent NPU work [11].

Figure 13 shows the application speedup and energy
reduction with CPU, GPU, GPU+NPU, and NGPU over
CPU+NPU. Even without using neural acceleration,
GPU provides significant performance and efficiency ben-
efits over NPU-accelerated CPU by leveraging data level
parallelism. GPU offers 5.6× average speedup and 3.9×
average energy reduction compared to CPU+NPU. A
GPU enhanced with our proposal (NGPU) increases the
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Figure 13: Speedup and energy reduction with CPU, GPU,
GPU+NPU, and NGPU.(The baseline is CPU+NPU, which is a
CPU augmented with a NPU accelerator [10]).

average speedup and energy reduction to 13.2× and
10.8×, respectively. Moreover, as GPUs already ex-
ploit data-level parallelism, our proposal offers virtu-
ally the same speedup as the area-intensive GPU+NPU.
However, accelerating GPU with the NPU design im-
poses 31.2% area overhead while our NGPU imposes
1.2%. GPU with area-intensive NPU (GPU+NPU) of-
fers 17.4% less energy benefits compared to NGPU mostly
due to more leakage. In summary, our proposal offers
the highest level of performance and energy efficiency
across the examined benchmarks with the modest area
overhead of approximately 1.2% per SM.

7 Related Work
Recent work has explored a variety of approximation
techniques that include: (a) approximate storage de-
signs [38, 39] that trades quality of data for reduced
energy [38] and longer lifetime [39], (b) voltage over-
scaling [28, 40, 41], (c) loop perforation [30, 42, 43], (d)
loop early termination [29], (e) computation substitu-
tion [6, 9, 29, 44], (f) memoization [7, 8, 45], (g) limited
fault recovery [42, 46–50], (h) precision scaling [16, 51],
(i) approximate circuit synthesis [19, 52–57], and (j)
neural acceleration [10–15].

This work falls in the last category; yet, we exclu-
sively focus on the integration of neural accelerators
within GPU throughput processors. The prior work on
neural acceleration mostly focuses on single-threaded
CPU code acceleration by either loosely coupled neural
accelerators [12–14, 58, 59] or tightly-coupled ones [10,
11]. Grigorian et al. study the effects of eliminat-
ing control-flow divergence by converting SIMD code to
software neural networks with no hardware support [15].
However, prior work does not explore tight integration
of neural hardware in throughput processors; and does
not study the interplay of data parallel execution and
hardware neural acceleration. Prior to this work, the
benefits, limits, and challenges of integrating hardware
neural acceleration within GPUs for many-thread data-
parallel applications was unexplored.

There are several other approximation techniques in
the literature that can or have been applied to GPU
architectures. Loop perforation [30] periodically skips
loop iteration for gains in performance and efficiency.
Green [29] terminates loops early or substitute compute
intensive functions with simpler, lower quality versions
that are provided by the programmer. Relax [46] is
compiler/architecture system for suppressing hardware
fault recovery in approximable regions of code, expos-
ing these errors to the application. Fuzzy memoization
forgoes invoking a floating point unit if the inputs are in
the neighborhood of previously seen inputs. The results
of the previous calculation is reused as an approximate
result. Arnau et al. use hardware memoization to re-
duce redundant computation in GPUs [8]. Sartori et al.
propose a technique that mitigates branch divergence
by forcing the divergent threads to execute the most
popular path [9]. In case of memory divergence, they
force all the threads to access the most commonly de-
manded memory block. SAGE [6] and Paraprox [7] per-
form compile-time static code transformations on GPU
kernels that include data compression, profile-directed
memoization, thread fusion, and atomic operation op-
timization. Our quality control mechanism takes inspi-
ration form the quality control in these two works.

In contrast, we describe a hardware approximation
technique that integrates neural accelerators within the
pipeline of the GPU cores. In our design, we aim at min-
imizing the pipeline modifications and utilizing existing
hardware components. Distinctively, our work explores
the interplay between data parallelism and neural accel-
eration and studies its limits, challenges, and benefits.

8 Conclusion
Many of the emerging applications that can benefit from
GPU acceleration are amenable to inexact computa-
tion. We exploited this opportunity by integrating an
approximate form of acceleration, neural acceleration,
within GPU architectures. Our neurally accelerated
GPU architecture, provides significant performance and
efficiency benefits while providing reasonably low hard-
ware overhead (1.2% area overhead per SM). The qual-
ity control knob and mechanism also provided a way to
navigate the tradeoff between the quality and the ben-
efits in efficiency and performance. Even with as low as
2.5% quality loss, our neurally accelerated GPU archi-
tecture (NGPU) provides average speedup of 1.9× and
average energy savings of 2.1×. These benefits are more
than 10× in several cases. These results suggest that
hardware neural acceleration for GPU throughput pro-
cessors can be a viable approach to significantly improve
their performance and efficiency.
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