
Appears in the ACM Transactions on Architecture and Code Optimization (TACO)

RFVP: Rollback-Free Value Prediction
with Safe to Approximate Loads

Amir Yazdanbakhsh, Georgia Institute of Technology
Gennady Pekhimenko, Carnegie Mellon University
Bradley Thwaites, Georgia Institute of Technology
Hadi Esmaeilzadeh, Georgia Institute of Technology
Onur Mutlu, Carnegie Mellon University
Todd C. Mowry, Carnegie Mellon University

This paper aims to tackle two fundamental memory bottlenecks: limited off-chip bandwidth (bandwidth
wall) and long access latency (memory wall). To achieve this goal, our approach exploits the inherent error
resilience of a wide range of applications. We introduce an approximation technique, called Rollback-Free
Value Prediction (RFVP). When certain safe-to-approximate load operations miss in the cache, RFVP pre-
dicts the requested values. However, RFVP does not check for or recover from load value mispredictions,
hence, avoiding the high cost of pipeline flushes and re-executions. RFVP mitigates the memory wall by
enabling the execution to continue without stalling for long-latency memory accesses. To mitigate the band-
width wall, RFVP drops some fraction of load requests which miss in the cache after predicting their values.
Dropping requests reduces memory bandwidth contention by removing them from the system. The drop rate
is a knob to control the tradeoff between performance/energy efficiency and output quality.

Our extensive evaluations show that RFVP, when used in GPUs, yields significant performance improve-
ment and energy reduction for a wide range of quality loss levels. We also evaluate RFVP’s latency benefits
for a single core CPU. The results show performance improvement and energy reduction for a wide variety
of applications with less than 1% loss is quality.

Categories and Subject Descriptors: C.1.2 [Computer Systems Organization]: SIMD

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Load Value Approximation, GPUs, Value Prediction, Memory Latency,
Memory Bandwidth

1. INTRODUCTION
The disparity between the speed of processors and off-chip memory is one of the main
challenges in microprocessor design. Loads that miss in the last-level cache can take
hundreds of cycles to deliver data. This long latency causes frequent long stalls in the
processor. This problem is known as the memory wall. Modern GPUs exploit large-scale
data parallelism to hide main memory latency. However, this solution suffers from a funda-
mental bottleneck: limited off-chip memory bandwidth to supply data to processing units.
In fact, memory bandwidth is predicted to be one of the main performance-limiting factors
in accelerator-rich architectures as technology scales [Chung et al. 2010]. This problem is
known as the bandwidth wall [Rogers et al. 2009]. Fortunately, there is an opportunity to
leverage the inherent error resiliency of many emerging applications to tackle the memory
and bandwidth problems. This paper exploits this opportunity and introduces an approxi-
mation technique to mitigate these memory subsystem bottlenecks.

Large classes of emerging applications such as web search, data analytics, machine
learning, cyber-physical systems, augmented reality, and computer vision can tolerate error
in large parts of their execution. Hence the growing interest in developing general-purpose
approximation techniques. These techniques can tolerate error in computation and trade
Quality of Result for gains in performance, energy, storage capacity, and hardware
cost [Yazdanbakhsh et al. 2015; Mahajan et al. 2015; Amant et al. 2014; Luo et al. 2014;

A:2 A. Yazdanbakhsh et al.

Sidiroglou-Douskos et al. 2011]. These techniques include (a) voltage over-scaling [Es-
maeilzadeh et al. 2012a; Chakrapani et al. 2006], (b) loop perforation [Sidiroglou-Douskos
et al. 2011], (c) loop early termination [Baek and Chilimbi 2010], (d) computation substi-
tution [Amant et al. 2014; Samadi et al. 2013; Esmaeilzadeh et al. 2012b], (e) memoiza-
tion [Samadi et al. 2014; Arnau et al. 2014; Alvarez et al. 2005], (f) limited fault recov-
ery [de Kruijf et al. 2010; Li and Yeung 2007], and (g) approximate data storage [Luo et al.
2014; Sampson et al. 2013; Liu et al. 2011]. However, there is a lack of approximation
techniques that address the key memory system performance bottlenecks of long access
latency and limited off-chip memory bandwidth.

To mitigate these memory subsystem bottlenecks, this paper introduces a new approxi-
mation technique called Rollback-Free Value Prediction (RFVP). The key idea is to predict
the value of the safe-to-approximate loads when they miss in the cache, without checking
for mispredictions or recovering from them, thus avoiding the high cost of pipeline flushes
and re-executions. RFVP mitigates the memory wall by enabling the computation to con-
tinue without stalling for long-latency memory accesses of safe-to-approximate loads. To
tackle the bandwidth wall, RFVP drops a certain fraction of the cache misses after pre-
dicting their values. Dropping these requests reduces the memory bandwidth demand as
well as memory and cache contention. The drop rate becomes a knob to control the trade-
off between performance-energy and quality. In this work, we aim to devise concepts and
mechanisms that maximize RFVP’s opportunities for speedup and energy gains, while
keeping the quality degradations acceptably small. We provide architectural mechanisms
to control quality degradation and always guarantee execution without catastrophic failures
by leveraging programmer annotations. RFVP shares some similarities with traditional ex-
act value prediction techniques [Perais and Seznec 2014; Goeman et al. 2001; Sazeides
and Smith 1997; Lipasti et al. 1996; Eickemeyer and Vassiliadis 1993] that can mitigate the
memory wall. However, it fundamentally differs from prior work in that it does not check for
misspeculations and does not recover from them. Consequently, RFVP not only avoids the
high cost of recovery, but is able to drop a fraction of the memory requests to mitigate the
bandwidth wall.

In our initial work [Thwaites et al. 2014], we introduced the Rollback-Free Value Predic-
tion technique for CPUs to lower the effective memory access latency. We also discussed
the idea of dropping a fraction of memory requests [Thwaites et al. 2014]. Our results
show that dropping memory requests in CPUs are not effective. Later, in a concurrent
effort [San Miguel et al. 2014], San Miguel et al. proposed a technique that uses value pre-
diction without checks for misprediction to address the memory latency bottleneck in CPU
processors. They also studied the effect of dropping memory requests in CPUs and how it
affects the accuracy of the predictor and corroborated our reported results [Thwaites et al.
2014]. This paper explores the following directions that differ from our initial work [Thwaites
et al. 2014] and the concurrent work [San Miguel et al. 2014]: (1) we specialize our tech-
niques for GPU processors, targeting the bandwidth bottleneck rather than latency, show-
ing that RFVP is an effective approach for mitigating both latency and bandwidth problems;
(2) we utilize the value similarity of accesses across adjacent threads in many GPU ap-
plications to develop a low-overhead multi-value predictor capable of producing values for
many simultaneously-missing loads as they execute lock-step in GPU cores; (3) we drop a
portion of missing load requests to address the limited off-chip bandwidth bottleneck.

This paper makes the following contributions:

(1) We introduce a new approximation technique, Rollback-Free Value Prediction (RFVP),
that addresses two important system bottlenecks, long memory latency and limited off-
chip bandwidth, by utilizing approximate value prediction mechanisms. The core idea in
RFVP is to drop a fraction of cache-missing loads, after predicting their values. There-

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:3

fore, RFVP mitigates the memory bandwidth bottleneck and reduces the effective mem-
ory latency.

(2) We propose a new multi-value prediction mechanism for SIMD load instructions in
GPUs. These SIMD load instructions request multiple values in one access. To minimize
the overhead of the multi-value predictor, we exploit the insight that there is significant
value similarity across accesses in the adjacent threads (e.g., due to existing similarity
in adjacent pixels in an image). Such value similarity has been demonstrated in recent
works [Samadi et al. 2014; Arnau et al. 2014]. For our multi-value predictor in RFVP,
we use the two-delta value predictor [Eickemeyer and Vassiliadis 1993]. To find the best
design parameters for our proposed predictor, we perform a Pareto-optimality analysis
and explore the design space of our predictor and apply the optimal design in a modern
GPU.

(3) We provide a comprehensive evaluation of RFVP using a modern Fermi GPU architec-
ture. For a diverse set of benchmarks from Rodinia, Mars, and Nvidia SDK, employing
RFVP delivers, on average, 36% speedup, 27% energy reduction, and 48% reduction
in off-chip memory bandwidth consumption, with average 8.8% quality loss. With less
than 10% quality loss, the benefits reach a maximum of 2.4× speedup, 2.0× energy
reduction, and 2.3× off-chip memory bandwidth consumption reduction. For a subset
of SPEC CFP 2000/2006 benchmarks that are amenable to safe approximation, em-
ploying RFVP in a modern CPU achieves, on average, 9.7% speedup and 6.2% energy
reduction, with 0.9% average quality loss.

2. ARCHITECTURE DESIGN FOR RFVP
2.1. Rollback-Free Value Prediction
Motivation. GPU architectures exploit large-scale data-level parallelism through many-
thread SIMD execution to mitigate the penalties of long memory access latency. Concur-
rent SIMD threads issue many simultaneous memory accesses that require high off-chip
bandwidth–one of the main bottlenecks for modern GPUs [Vijaykumar et al. 2015; Pekhi-
menko et al. 2015; Keckler et al. 2011]. Figure 1 illustrates the effects of memory bandwidth
on application performance by varying the available off-chip bandwidth in the Nvidia GTX
480 chipset with the Fermi architecture. Many of the applications in our workload pool ben-
efit significantly from increased bandwidth. For instance, a system with twice the baseline
off-chip bandwidth enjoys 26% average speedup, with up to 80% speedup for the s.srad2
application. These results support our expectation that alleviating the bandwidth bottle-
neck can result in significant performance benefits. RFVP exploits this insight and aims to
lower the memory bandwidth pressure by dropping a fraction of the value-predicted safe-
to-approximate loads, slightly trading output quality for large gains in performance and
energy efficiency.

Overview. As explained earlier, the key idea of rollback-free value prediction (RFVP)
is to predict the values of the safe-to-approximate loads when they miss in the cache
with no checks or recovery from misprediction. RFVP not only avoids the high cost of
checks and rollbacks but also drops a fraction of the cache misses. Dropping these misses
enables RFVP to mitigate the bottleneck of limited off-chip bandwidth, and does not affect
output quality when the value prediction is correct. All other requests are serviced normally,
allowing the processing core to benefit from the spatial and temporal locality in future
accesses.

Drop rate is a knob to control the tradeoff between performance/energy gains and qual-
ity loss. A higher drop rate enables the core to use more predicted approximate values,
thereby reducing main memory accesses. We expose the drop rate as an architectural
knob to the software. The compiler or the runtime system can use this knob to control
the performance/energy and quality tradeoff. Furthermore, RFVP enables the core to con-

A:4 A. Yazdanbakhsh et al.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Sp
ee
du
p

bac
kpr
op

fas
twa
lsh

gau
ssia

n

hea
rtw
all

ma
trix
mu
l

par
ticl
efil
ter

s.re
duc

e

sim
ilar
itys

cor
e

s.sr
ad2

stri
ngm

atc
h

geo
me
an

13.7 2.5 13.5 2.6 4.0 2.6
0.5 x 2.0 x 4.0 x 8.0 x Perfect MemoryBaseline Bandwidth

Fig. 1: Performance improvement with different amounts of DRAM bandwidth and per-
fect memory (last bar). The baseline bandwidth is 177.4 GB/sec (based on the Nvidia
GTX 480 chipset with the Fermi architecture). The legend (N×) indicates a configura-
tion with N times the bandwidth of the baseline. Perfect memory is an idealized system
where all memory accesses are L1 cache hits.

tinue without stalling for long-latency memory accesses that service the value-predicted
load misses. Consequently, these cache-missing loads are removed from the critical path
of the program execution. We now elaborate on the safety guarantees with RFVP, its ISA
extensions and their semantics, and its integration into the microarchitecture.

2.2. Safe Approximation with RFVP
Not all load instructions can be safely approximated. For example, loads that affect critical
data segments, array indices, pointer addresses, or control flow conditionals are usually not
safe-to-approximate. RFVP is not used to predict the values of such loads. As prior work
in approximation showed [Park et al. 2015; Sampson et al. 2011], safety is a semantic
property of the program, and language construction with programmer annotations is nec-
essary to identify safely-approximable instructions. As a result, the common and necessary
practice is to rely on programming language support along with compiler optimizations to
identify which instructions are safe-to-approximate [Carbin et al. 2013; Esmaeilzadeh et al.
2012b; Esmaeilzadeh et al. 2012a; Sampson et al. 2011; Baek and Chilimbi 2010]. Sim-
ilarly, RFVP requires programmer annotations to determine the set of candidate load in-
structions for safe approximation. Therefore, any architecture that leverages RFVP needs
to provide ISA extensions that enable the compiler to mark the safely-approximable loads.
Section 2.3 describes these ISA extensions. Section 3 describes the details of our compi-
lation workflow and language support for RFVP.

2.3. Instruction Set Architecture to Support RFVP
We extend the ISA with two new instructions: (1) an approximate load instruction, and
(2) a new instruction for setting the drop rate. Similar to prior work [Esmaeilzadeh et al.
2012a], we extend the ISA with dual approximate versions of the load instructions. A bit
in the opcode is set when a load is approximate, permitting the microarchitecture to use
RFVP. Otherwise, the load is precise and must be executed normally. RFVP is triggered
only when the load misses in the cache. For ISAs without explicit load instructions, the
compiler marks any safe-to-approximate instruction that can generate a load micro-op. In
this case, RFVP is triggered only when the load micro-op misses in the cache.

Drop rate. The drop rate is a knob that is exposed to the compiler to control the quality
tradeoffs. We provide an instruction that sets the value of a special register to the desired
drop rate. This rate is usually set once during application execution (not for each load).

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:5

More precisely, the drop rate is the fraction of approximate cache misses that do not initiate
memory access requests, and instead only trigger rollback-free value prediction.1 When
the request is not dropped, it is considered a normal cache miss, and its value is fetched
from memory.

Approximate load. Semantically, an approximate load is a probabilistic load. That is, ex-
ecuting load.approx Reg<id>, MEMORY<address> assigns the exact value stored in
MEMORY<address> to Reg<id> with some probability, referred to as the probability of
exact assignment. The Reg<id> receives a predicted value in other cases. Intuitively, with
RFVP, the probability of exact assignment is usually high for two reasons: (1) Our technique
is triggered only by cache misses. Approximate loads which hit in the cache (the common
case) return the correct value and (2) even in the case of a cache miss, the value predictor
may generate a correct value prediction. Our measurements with a 50% drop rate show
that, across all the GPU applications, the average probability of exact assignment to the
approximate loads is 71%. This probability ranges from 43% to 88%. These results confirm
the effectiveness of using cache misses as a trigger for RFVP. However, we do not expect
the compiler to reason about these probabilities.

2.4. Integrating RFVP into the Microarchitecture
As Figure 2 illustrates, the RFVP value predictor supplies the data to the processing core
when triggered by a safe-to-approximate load. The core then uses the data as if it were
supplied by the cache. The core commits the load instruction without any checks or pipeline
stalls associated with the original miss. In the microarchitecture, we use a simple pseudo-
random number generator, a Linear Feedback Shift Register (LFSR) [Murase 1992], to
determine when to drop the request based on the specified drop rate.

In modern GPUs, each Streaming Multiprocessor (SM) contains several Stream Proces-
sors (SP) and has its own dedicated L1. We augment each SM with an RFVP predictor
that is triggered by its L1 data cache misses. Integrating the RFVP predictor with SMs re-
quires special consideration because each GPU SIMD load instruction accesses multiple
data elements for multiple concurrent threads. In the case of an approximate load miss, if
the predictor drops the request, it predicts the entire cache line. The predictor supplies the
requested words back to the SM, and also inserts the predicted line into the L1 cache.

RFVP
Predictor

L1 Data
Cache

Load

Memory Request

WarpID/PC

Load Type

Cache Miss

Prediction

Drop Signal

Streaming
Multiprocessor

Fig. 2: Integration of the RFVP predictor into the GPU microarchitecture.
If RFVP does not predict the entire cache line, a subsequent safe-to-approximate load

to the same cache line would lead to another miss. But since RFVP does not predict and
drop all missing safe-to-approximate loads, same line would need to be requested again
from memory. Thus, RFVP would not be able to effectively reduce bandwidth consumption,
if it did not insert the entire cache line. Hence, our decision is to value-predict and insert
the entire cache line.

1Another option is to enable dropping a certain fraction of all cache accesses including hits. Such a policy
may be desirable for controlling error in multi-kernel workloads.

A:6 A. Yazdanbakhsh et al.

1 2 3 4 5 6 7 8 9 10
NuPber of Loads

0%

20%

40%

60%

80%

100%

P
er

ce
nt

ag
e

of
 L

oa
d

M
Ls

se
s

backprop
fastwalsh
gaussian
heartwall
matrixmul
particlefilter
reduce
similarityscore
srad2
stringmatch

Fig. 3: Cumulative distribution function (CDF) plot of the LLC load cache misses. A
point (x, y) indicates that y percent of the cache misses are caused by x distinct load
instructions.

Since predicted lines may be written to memory, we require that any data accessed by
a precise load must not share a cache line with data accessed by approximate loads. The
compiler is responsible for allocating objects in memory such that precise and approximate
data never share a cache line. We accomplish this by always requiring that the compiler
allocate objects in memory at cache line granularity. Approximate data always begins at
a cache line boundary, and is padded to end at a cache line boundary. Thus, we can
ensure that data value prediction does not contaminate precise load operations.2 The same
stipulation has been set forth in several recent works in approximate computing, such as
Truffle [Esmaeilzadeh et al. 2012a] and EnerJ [Sampson et al. 2011].

The coalescing logic in the SMs handles memory divergence and serializes the divergent
threads. Since RFVP is triggered only by cache misses that happen after coalescing, RFVP
is agnostic to memory divergence.

3. LANGUAGE AND SOFTWARE SUPPORT FOR RFVP
Our design principle for RFVP is to maximize the opportunities for performance and en-
ergy efficiency improvements, while limiting the adverse effects of approximation on output
quality.

To achieve this goal, the compilation workflow for RFVP first identifies performance-
critical loads. A performance-critical load is one that provides a higher potential for per-
formance improvement when its latency is reduced. Second, among the performance-
critical loads, the programmer determines and annotates the loads that are safe-to-
approximate, which means they will not cause catastrophic failures if approximated. The
list of performance-critical and safe-to-approximate loads are the candidates for approx-
imation with RFVP. Afterwards, we determine the drop rate using either (1) programmer
annotation, (2) compiler heuristics, or (3) a run-time system such as SAGE [Samadi et al.
2013]. In our evaluation, we empirically pick the best drop-rate to maximize performance
while maintaining high output quality.3

3.1. Targeting Performance-Critical Loads
The first step in the compilation workflow for RFVP is to identify the subset of the loads
that cause the largest percentage of cache misses. As prior work has shown [Collins et al.
2001], and our experiments corroborate, only a very small fraction of the load instructions
cause most of the total cache misses. Figure 3 illustrates this trend by showing the cumu-

2Note that, we do not use any padding for the baseline experiments. As the result, there is no artificial
increase in bandwidth consumption in the baseline.

3A light profiling step can be utilized to automatically tune the drop-rate for the target output quality
requirement.

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:7

lative distribution function of the LLC cache misses caused by distinct load instructions in
the GPU. As Figure 3 shows, in all of our GPU applications except one, almost six loads
cause more than 80% of the misses. We refer to these loads as the performance-critical
loads. This hot subset of loads is selected without any a-priori knowledge of the applica-
tions. We use one training input to profile the benchmarks. The output of the profiling is
a sorted list of the loads in decreasing order based on the fraction of cache misses each
load causes. Note that the list of performance-critical loads is obtained only once and is
not changed based on the inputs. Clearly, focusing rollback-free value prediction on these
loads will provide the opportunity to eliminate a majority of the cache misses. Furthermore,
the focus on a small, selected subset of loads reduces the predictor size and consequently
its overheads. Therefore, this step provides the set of the most performance-critical and
safe-to-approximate loads as candidates for approximation. We explain the nature of some
of these loads in Appendix (pp. 22). Note that programmer annotations identify which of
these performance-critical loads are safe-to-approximate (see Section 2.2 and 3.2).

3.2. Providing Safety Guarantees
The next step is to ensure that loads that can cause safety violations are excluded from
RFVP. Any viable approximation technique, including ours, needs to provide strict safety
guarantees. In other words, applying approximation should cause only graceful quality
degradations without catastrophic failures, e.g., segmentation faults or infinite loops.

Safety is a semantic property of a program [Park et al. 2015; Yazdanbakhsh et al. 2015;
Mahajan et al. 2015; Carbin et al. 2013; Sampson et al. 2011]. Therefore, only the pro-
grammer can reliably identify which instructions are safe-to-approximate. For example, En-
erJ [Sampson et al. 2011] provides language constructs and compiler support for annotat-
ing safe-to-approximate operations in Java. We do not expect the programmer to deeply
annotate the approximable loads. Instead, programming models such as FlexJava [Park
et al. 2015] and EnerJ [Sampson et al. 2011] are used that allow the programmer to anno-
tate only the variable declarations and the compiler automatically infers the approximable
loads from these annotations. The rule of thumb is that it is usually not safe to approximate
array indices, pointers, and control flow conditionals. However, even after excluding these
cases to ensure safety, RFVP still provides significant performance and energy gains (as
our results in Section 6 confirm) because there are still enough performance-critical loads
that are safe-to-approximate.

Figure 4 shows code examples from our applications to illustrate how approximating
load instructions can lead to safety violations. In Figure 4a, it is not safe to approximate
loads from ei , row , d iS[row] variables that are used as array indices. Approximating such
loads may lead to out-of-bounds array accesses and segmentation faults. In Figure 4b,
it is unsafe to approximate variable d Src, which is a pointer. Approximation of this vari-
able may lead to memory safety violations and segmentation faults. In Figure 4c, it is not
safe to approximate the ei new and in2 elem variables because they affect control flow.
Approximating such loads may lead to infinite loops or premature termination. In many
cases, control flow in the form of an if-then-else statement can be if-converted to data
flow [Allen et al. 1983]. Therefore, it might be safe to approximate the loads that affect the
if-convertible control flow conditionals. Figure 4d illustrates such a case. Loads for both
value and newValue are safe-to-approximate even though they affect the if condition.

3.3. Drop-Rate Selection
The first two steps above provide a small list of safe-to-approximate and performance-
critical loads for RFVP. The final step in the RFVP compilation workflow is to pick the best
drop rate that maximizes the benefits of RFVP while satisfying the target output quality
requirement. In general, providing formal quality guarantees for approximation techniques
across all possible inputs is still an open research problem. However, the drop rate is

A:8 A. Yazdanbakhsh et al.

void srad2{
N = d_c[ei];
S = d_c[d_iS[row] + d_Nr * col];
W = d_c[ei];
E = d_c[row + d_Nr * d_jE[col]];

}

(a) Code example from srad

float *d_Src = d_Input + base;
for(int pos = threadIdx.x;

pos < N; pos += blockDim.x)
{

s_data[pos] = d_Src[pos];
}

(b) Code example from fastwalsh

while(ei_new < in2_elem){
row = (ei_new +1)

% d_common.in2_rows - 1;
col = (ei_new +1)

/ d_common.in2_rows + 1;
}

(c) Code example from heartwall

if (value - newValue < .5f)
{

result = newValue;
}
else

result = newValue + 1;

(d) Code example from particlefilter

Fig. 4: Code examples with different safety violations.

a knob that enables RFVP to explore various quality tradeoffs. RFVP can use different
techniques to select the drop-rate. We can determine the drop rate dynamically at runtime
using techniques such as those described in SAGE [Samadi et al. 2013]. SAGE uses
computation sampling and occasional redundant execution on the CPU to dynamically
monitor and control approximation. While dynamically setting the drop rate may provide the
advantage of more adaptive error control, it comes at the cost of some additional overhead.
Alternatively, a lightweight profile-driven technique can statically determine the drop rate
that satisfies the target output quality. To this end, the compiler can perform a stochastic
binary search to determine the drop rate. The compiler starts with the drop rate of 50%. If
this drop rate satisfies the output quality target, the compiler increases the drop rate by a
delta. Otherwise, it reduces the drop rate. This process continues until the highest drop rate
that stochastically satisfies the target quality is found. Ultimately, the compiler empirically
picks a static drop rate in our evaluation, but using a dynamic scheme to adjust drop rate
is also a viable alternative.

Altogether, the three steps (described in Section 3.1, 3.2, and 3.3) provide a compilation
workflow that focus RFVP on the safe-to-approximate loads with the highest potential in
terms of performance and energy savings while satisfying the target output quality require-
ment.

4. VALUE PREDICTOR DESIGN FOR RFVP
One of the main design challenges for effective rollback-free value prediction is devising a
low-overhead and fast-learning value predictor. The predictor needs to quickly adapt to the
rapidly-changing value patterns in every approximate load instruction. There are several
modern exact value predictors (e.g., [Perais and Seznec 2014; Goeman et al. 2001]). We
use the two-delta stride predictor [Eickemeyer and Vassiliadis 1993] due to its low complex-
ity and reasonable accuracy as the base for our multi-value prediction mechanism for GPUs
(which predicts all values in an entire cache line). We have also experimented with other
value prediction mechanisms such as DFCM [Goeman et al. 2001], last value [Lipasti and
Shen 1996] and stride [Sazeides and Smith 1997]. Empirically, two-delta predictor provides
a good tradeoff between accuracy and complexity. We choose this scheme because it only
requires one addition to perform the prediction and only a few additions and subtractions
for training. It also requires lower storage overhead than more accurate context-sensitive
alternatives [Perais and Seznec 2014; Goeman et al. 2001]. However, this predictor cannot
be readily used for multi-value prediction (for predicting the entire cache line), which is re-
quired for GPUs, as explained earlier. Due to the SIMD execution model in modern GPUs,
the predictor needs to generate multiple parallel predictions for multiple parallel threads.

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:9

Below, we first describe the design of the base predictor, and then devise a new predictor
that performs full cache line multi-value GPU prediction.

4.1. Base Predictor for RFVP
Figure 5 illustrates the structure of the two-delta predictor [Eickemeyer and Vassiliadis
1993], which we use as the base predictor design for rollback-free value prediction in
GPUs.4 The predictor consists of a value history table that tracks the values of the load
instructions. The table is indexed by a hash of the approximate load’s PC. We use a hash
function that is similar to the one used in [Goeman et al. 2001]. Each row in the table stores
three values: (1) the last precise value (64-bit), (2) Stride1 (16-bit), and (3) Stride2 (16-bit).
The last value plus Stride1 makes up the predicted value. When a safe-to-approximate load
misses in the cache but is not dropped, the predictor updates the last value upon receiv-
ing the data from lower level memory. We refer to the value from memory as the current
value. Then, the predictor calculates the stride, the difference between the last value and
the current value. If the stride is equal to Stride2, it stores the stride in Stride1. Otherwise
Stride1 will not be updated. The predictor always stores the stride in Stride2. The two-delta
predictor updates Stride1, which is the prediction stride, only if it observes the same stride
twice in a row. This technique produces a low rate of mispredictions, especially for integer
workloads [Eickemeyer and Vassiliadis 1993]. However, for floating point loads, it is unlikely
to observe two matching strides. Floating point additions and subtractions are also costly.
Furthermore, RFVP performs approximate value predictions for error-resilient applications
that can tolerate small deviations in floating point values. Considering these challenges
with floating point value prediction and the approximate nature of the target applications,
our two-delta predictor simply outputs the last value for floating point loads. We add a bit
to each row of the predictor to indicate whether or not the corresponding load is a floating
point instruction.

+

Last
Value Stride1 Stride2

{PC}

PredictionHash

FP

Fig. 5: Structure of the base two-delta predictor.

4.2. Value Predictor Design for GPUs
Here, we elaborate on the RFVP predictor design for multi-value prediction, (i.e., for pre-
dicting the entire cache line) in GPUs, where SIMD loads read multiple words.

GPU predictor structure. The fundamental challenge in designing the GPU predictor is
that a single data request is a SIMD load that must produce values for multiple parallel
threads. A naive approach to performing value prediction in GPUs is to replicate the single
value predictor for each parallel thread. For example, in a typical modern GPU, there may
be as many as 1,536 threads in flight during execution. Therefore, the naive predictor would
require 1,536 separate two-delta predictors, which is impractical. Fortunately, we find that
while each SIMD load requires many predicted data elements, adjacent threads operate
on data that has significant value similarity. In other words, we expect that the value in a
memory location accessed by thread N will be similar to the values accessed by threads
N-1 and N+1. This insight drives our value predictor design.

4For clarity, Figure 5 does not depict the update logic of the predictor.

A:10 A. Yazdanbakhsh et al.

In many GPU applications, adjacent threads in a warp process data elements with some
degree of value similarity, e.g. pixels of an image. Previous work [Samadi et al. 2013] shows
the value similarity between the neighboring locations in memory for GPGPU workloads.
Furthermore, GPU bandwidth compression techniques (e.g., [Vijaykumar et al. 2015])
exploit this value similarity in GPGPU workloads to compress data with simple compression
algorithms [Pekhimenko et al. 2012]. Our evaluation also shows significant value similarity
between adjacent threads in the applications we study.

In our multi-value predictor design for GPUs, we leverage (1) the existing value similarity
in the adjacent threads and (2) the fact that predictions are only approximations and the
application can tolerate small prediction errors.

We design a predictor that consists of only two specialized two-delta predictors. In order
to perform the entire cache line5 prediction, we introduce special prediction and update
mechanisms for RFVP, which we explain later in this section. Additionally, to reduce the
conflicts between loads from different active warps, we make the GPU predictor set asso-
ciative (using the LRU replacement policy). As Figure 6 shows, for each row in the predictor,
we keep the corresponding load’s {WarpID, PC} as the row tag. A load value is predicted
only if its {WarpID, PC} matches the row tag. For most measurements, we use a predictor
that has 192 entries, is 4-way set associative, and consists of two two-delta predictors and
two last value predictors. Using set-associativity for the predictor is a unique aspect of our
design that performs multi-value prediction. Section 6 provides a detailed design space
exploration for the GPU predictor, which includes the set associativity and the number of
parallel predictors, and the number of entries.

We explain the prediction and update mechanisms for our GPU configuration (Table II) in
which there are 32 threads per warp. Our RFVP predictor can be easily adapted for other
GPU configurations.

RFVP prediction mechanism. When there is a match between the {WarpID, PC} of a
SIMD load and one of the row tags of the RFVP predictor, the predictor generates two pre-
dictions: one for ThreadID=0–15 and one for ThreadID=16–31. RFVP achieves the entire
cache line prediction by replicating the two predicted values for the corresponding threads.
As Figure 6 shows, the Two-Delta (Th0–Th15) structure generates a prediction value that
is replicated for threads 0 to 15. Similarly, the Two-Delta (Th16-Th31) generates a predic-
tion for threads 16 to 31. Note that, each of the two two-delta predictors works similarly as
the baseline two-delta predictor [Eickemeyer and Vassiliadis 1993]. Using this approach,
RFVP is able to predict the entire cache line for each SIMD load access. Due to the high
cost of the floating-point operations, our RFVP predictor falls back to a simple last value
predictor for FP values. In other words, the predictor outputs the last value entry of each of
the two two-delta predictors as the predicted data. We use the FP bit in the RFVP predictor
to identify the floating-point loads.

In the GPU execution model, there might be situations in which an issued warp has less
than 32 active threads. Having less than 32 active threads causes gaps in the predicted
cache line. However, the data in these gaps might be later used by other warps. The simple
approach is not to perform value prediction for these gaps and fill them with random data.
Our evaluation shows that this approach leads to significant output quality degradation.
To avoid this quality degradation, RFVP fills the gaps with approximated data. We add
a column to each two-delta predictor that tracks the last value of word0 and word16 in
the cache line being accessed by the approximate load. When predicting the cache line,
all the words that are accessed by the active threads are filled by the pair of two-delta
predictors. The last value column of thread group Th0–Th15 (LVW0) is used to fill the gaps
in W0 to W15. Similarly, the last value column of thread group Th16–Th31 (LVW16) is used

5In our GPU configuration (Table II), each cache line has 32 4-byte words.

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:11

LVW0 Two-Delta (Th0-Th15) LVW16 V FP Tag LRU

Hash

Two-Delta (Th16-Th31)

{WarpID,PC}

ThreadID_Bit[5]
Active[ThreadID]

V: Valid Bit (1 bit), FP: Floating Point Entry (1 bit), Tag:{WarpID, PC} (38 bits), LRU: LRU Bits (6 bits)

W31W0

00 01 10 11
0
1

Set0

SetN

Prediction for Th0-Th15 Prediction for Th16-Th31

ThreadID_Bit[5]
Active[ThreadID]

00 01 10 11
0
1

Fig. 6: Structure of the multi-value predictor for RFVP in GPUs. The GPU predictor
consists of two two-delta and two last value predictors. The GPU predictor is also
set-associative to reduce the conflicts between loads from different active warps. The
predictor produces predictions for full cache lines.

to fill the gaps in W16 to W31. This proposed mechanism in RFVP guarantees that all
the threads get value-predicted approximated data (instead of random data) and avoids
significant output quality degradation.

RFVP update mechanism. When a safe-to-approximate load misses in the cache but
is not dropped, the predictor updates the two-delta predictor upon receiving the data from
lower level memory. The fetched data from lower level memory is precise and we refer to its
value as the current value. The Two-Delta (Th0-Th15) structure is updated with the current
value of the active thread of the thread group ThreadID=0–15 with the lowest threadID.
Similarly, the Two-Delta (Th16-Th31) is updated with the current value of the active thread
of thread group ThreadID=16–31 with the lowest threadID.

5. EXPERIMENTAL METHODOLOGY
We use a diverse set of applications, cycle-level simulation, and low-level energy modeling
to evaluate RFVP in a modern GPU. This section details our experimental methodology
and Section 6 presents our results.

5.1. Experimental Methodology for GPUs
Applications. As Table I shows, we use a diverse set of already optimized GPU bench-
marks from Rodinia [Che et al. 2009], Nvidia SDK, and Mars [He et al. 2008] benchmark
suites to evaluate RFVP with the GPU architectures. Columns 1-3 of Table I summarize
these applications and their domains. The applications are amenable to approximation
and represent a wide range of domains including pattern recognition, machine learning,
image processing, scientific computing, medical imaging, and web mining. One of the ap-
plications, srad takes an inordinately long time to simulate to completion. Therefore, we
evaluate the two kernels that dominate srad ’s runtime separately. These kernels are de-
noted as s.reduce and s.srad2 in Table I. We use NVCC 4.2 from the CUDA SDK with
-O3 flag to compile the applications for the Fermi microarchitecture. Furthermore, we do
not perform any optimizations in the source code in favor of RFVP. We only optimize the
number of thread blocks and number of threads per block of each kernel for our simulated
hardware.

Quality metrics. Column 4 of Table I lists each application’s quality metric. Each
application-specific quality metric determines the application’s output quality loss as it un-
dergoes RFVP approximation. Using application-specific quality metrics is commensurate
with other works on approximation [Amant et al. 2014; Esmaeilzadeh et al. 2012b; Es-

A:12 A. Yazdanbakhsh et al.

Table I: Evaluated GPU applications, input data, quality metrics, and characteristics.
Name Suite Domain Quality Metric Evaluation Set Approx

Loads

backprop Rodinia Machine Learning Avg Relative Error A Neural Network with 262,144 Neurons (10, 2)

fastwalsh NVIDIA SDK Signal Processing Image Diff 512x512-Pixel Color Image (2, 1, 4)

gaussian NVIDIA SDK Image Processing Image Diff 512x512-Pixel Color Image 5

heartwall Rodinia Medical Imaging Avg Displacement Five Frames of Ultrasound Images 10

matrixmul Mars Scientific NRMSE Two 512x512 Matrices 8

particle filter Rodinia Medical Imaging Avg Displacement 512x512x10 Cube with 2,000 Particles (2, 3)

similarity score Mars Web Mining NRMSE Five HTML Files 8

s.reduce Rodinia Image Processing NRMSE 512x512-Pixel Color Image 2

s.srad2 Rodinia Image Processing NRMSE 512x512-Pixel Color Image 4

string match Mars Web Mining Missmatch Rate 16 MB File 1

G
PU

 A
pp

lic
at

io
ns

maeilzadeh et al. 2012a; Sampson et al. 2011; Baek and Chilimbi 2010]. To measure
quality loss, we compare the output from the RFVP-enabled execution to the output with
no approximation. For similarityscore, s.reduce, s.rad2 and matrixmul , which generate nu-
merical outputs, we use the normalized root-mean-square error (NRMSE) as the quality
metric. The backprop application solves a regression problem and generates a numeric
output. The regression error is measured as relative error. Since gaussian and fastwalsh
output images, we use the image difference RMSE as the quality metric. The heartwall
application finds the inner and outer walls of a heart from 3D images and computes the
location of each wall. We measure the quality loss using the average Euclidean distance
between the corresponding points of the approximate and precise output. We use the same
metric for particlefilter , which computes locations of particles in a 3D space. Finally, we use
the total mismatch rate for stringmatch.

Load identification. The final column of Table I lists the number of static approximate
loads identified. These loads are a subset of all the loads that are marked as safe-to-
approximate by the programmer. There are only a few loads that contribute significantly
to the total number of cache misses. Therefore, RFVP focuses on the intersection of the
performance-critical loads and the loads that are marked by the programmer as safe-to-
approximate (as described in 3.1 and 3.2). For some applications, such as backprop, fast-
walsh, and particlefilter , we list the number of approximate loads for each individual kernel
within the application as a tuple in Table I, e.g., (2, 1, 4) for fastwalsh.

Cycle-level microarchitectural simulation. We use the cycle-level GPGPU-Sim simula-
tor version 3.1 [Bakhoda et al. 2009]. We modified the simulator to include our ISA ex-
tensions, value prediction, and all necessary cache and memory logic to support RFVP.
Table II summarizes the microarchitectural parameters of our baseline GPU. We run each
application 10 times with different input datasets to the completion and report the average
results.

Table II: Simulated GPU microarchitectural parameters.
System Overview: 15 SMs, 32 threads/warp, 6 memory channels; Shader Core Config: 1.4 GHz, 2 Sched-
ulers/SM [Rogers et al. 2012], Resources/SM: 48 warps/SM, 32,768 registers, 32KB shared memory; L1 Data
Cache: 16KB, 128B line, 4-way, LRU; L2 Unified Cache: 768KB, 128B line, 8-way, LRU; Memory: GDDR5,
924 MHz, 16 banks/MC, FR-FCFS; Interconnect: 700 MHz, 1 crossbar/direction (15 SMs, 6 MCs); Off-Chip
Bandwidth: 177.4 GB/sec

Energy modeling and overheads. To measure the energy benefits of RFVP, we use
GPUWattch [Leng et al. 2013], which is integrated with GPGPU-Sim. GPUWattch mod-
els the power consumption of the cores, on-chip interconnect, caches, memory controller,

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:13

and DRAM. RFVP comes with overheads including the prediction tables, arithmetic oper-
ations, and allocation of the predicted lines in the cache. Our simulator changes enable
GPUWattch to account for the caching overheads. We estimate the prediction table read
and write energy using CACTI version 6.5 [Muralimanohar et al. 2007]. We extract the
overhead of arithmetic operations from McPAT [Li et al. 2009]. Our energy evaluations use
a 40 nm process node and 1.4 GHz clock frequency (similar to the shader core clock
frequency). Furthermore, we have synthesized the LFSR and the hash function and incor-
porated the energy overheads. The default RFVP prediction table size is 14 KB per SM
and the GPU consists of 15 SMs. The off-chip memory bandwidth of the simulated GPU is
177.4 GB/sec.

6. EXPERIMENTAL RESULTS
6.1. GPU Measurements

Speedup, energy, memory bandwidth, and quality. Figure 7a shows the speedup with
RFVP for maximum 1%, 3%, 5%, and 10% quality degradation. We have explored this
tradeoff by setting different drop rates, which is RFVP’s knob for quality control. The base-
line is the default GPU system we model without RFVP. Figures 7b and 7c illustrate the
energy reduction and the reduction in off-chip bandwidth consumption, respectively. The
error bars show the standard deviation of 10 simulation runs with different inputs.

As Figures 7a and 7b show, RFVP yields, on average, 36% speedup and 27% en-
ergy reduction with 10% quality loss. The speedup is as high as 2.2× for matrixmul and
2.4× for similarityscore with 10% quality loss. The maximum energy reduction is 2.0×
for similarityscore. RFVP yields these benefits despite approximating fewer than 10 static
performance-critical load instructions per kernel. The results show the effectiveness of our
proposed mechanism in focusing approximation where it is most beneficial. With 5% qual-
ity loss, the average performance and energy gains are 16% and 14%, respectively. Thus,
RFVP is able to navigate the tradeoff between quality loss and performance-energy im-
provement based on the user requirements.

Even with a small quality degradation (e.g., 1%), RFVP yields significant speedup
and energy reduction in several applications, including fastwalsh, particlefilter , similari-
tyscore, s.srad2. In particular, the benefits are as high as 22% speedup and 20% energy
reduction for particlefilter with strictly less than 1% quality loss.

Comparing Figures 7a, 7b, and 7c shows that the benefits strongly correlate with the
reduction in bandwidth consumption. This strong correlation suggests that RFVP is able to
significantly improve both GPU performance and energy consumption by predicting load
values and dropping memory access requests. The applications for which the bandwidth
consumption is reduced the most (matrixmul, similarityscore), are usually the ones that
benefit the most from RFVP. One notable exception is s.reduce. Figure 7c shows that
RFVP reduces this application’s bandwidth consumption significantly (up to 90%), yet the
performance and energy benefits are relatively modest (about 10%). However, Figure 1
illustrates that s.reduce yields less than 40% performance benefit even with perfect mem-
ory. Therefore, the benefits from RFVP are expected to be limited for this application even
with significant bandwidth reduction. This case shows that an application’s performance
sensitivity to off-chip communication bandwidth is an important factor in RFVP’s ability
to improve performance and energy efficiency. Also, RFVP provides no benefit for string-
match with 10% quality degradation. This case is an interesting outlier which we discuss
in greater detail in the next subsection.

To better understand the sources of the benefits, we perform an experiment in which
RFVP fills the L1 cache with predicted values, but does not drop the corresponding mem-
ory requests. In this scenario, when the memory request completes, the predictor is up-

A:14 A. Yazdanbakhsh et al.

#REF!

1.0
1.1
1.2
1.3
1.4
1.5
1.6

Sp
ee
du
p 

ba
ckp
rop

fas
twa
lsh

ga
us
sia
n

he
art
wa
ll

ma
trix
mu
l

pa
rtic
lefi
lte
r

s.r
ed
uc
e

sim
ilar
ity
sco
re

s.s
rad
2

ge
om
ean

str
ing
ma
tch

2.2 2.4
Error 1% Error 3% Error 5% Error 10%

(a) Speedup

En
er

gy
 R

ed
uc

tio
n 

1.0

1.1

1.2

1.3

1.4
1.9 2.01.6

backprop

fastwalsh

gaussian

heartw
all

matrix
mul

partic
lefilte

r

s.re
duce

sim
ilarity

score

s.srad2

geomean

strin
gmatch

(b) Energy Reduction

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1.9

B
an

dw
id

th
  

C
on

su
m

pt
io

n
R

ed
uc

tio
n 2.3 1.9

backprop

fastwalsh

gaussian

heartw
all

matrix
mul

partic
lefilte

r

s.re
duce

sim
ilarity

score

s.srad2

geomean

strin
gmatch

(c) Memory Bandwidth Consumption Reduction

Fig. 7: GPU (a) performance improvement, (b) energy reduction, and (c) memory band-
width consumption reduction for at most 1%, 3%, 5%, and 10% quality degradation.
Error bars show the standard deviation of 10 simulation runs with different inputs.

dated with the fetched value from the main memory. The results are presented in Figure 8.
Without dropping requests, RFVP yields only 2% performance improvement and increases
energy consumption by 2% on average for these applications. These results suggest
that the source of RFVP’s benefits come primarily from reduced bandwidth consumption,
which is a major bottleneck in GPUs that hide latency with many-thread execution.6

All applications but one benefit considerably from RFVP in terms of both performance
and energy consumption, due to reduced off-chip communication. The energy benefits
are due to both reduced runtime and fewer costly data fetches from off-chip memory.
Overall, these results confirm the effectiveness of rollback-free value prediction in miti-
gating the bandwidth bottleneck for a diverse set of GPU applications.

Sources of quality degradation. To determine the effectiveness of our value prediction,
we measure the portion of load operations that return approximate values. Figure 9 shows
the result of these measurements for three different drop rates 12.5%, 25%, and 50%. The
results show that on average only 2% (max 5.4%) of all dynamic load instructions return
approximate values for a 25% drop rate. This percentage increases to 3% (max 7.5%) for
a 50% drop rate. Thus, a large majority of all dynamic loads return exact values, even at
reasonably high drop rates. The prediction accuracy is relatively low (on average 63%),

6We study the effects of RFVP on single-core CPUs that are more latency sensitive in Section 7.

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:15

-10%
-8%
-6%
-4%
-2%
0%
2%
4%
6%
8%

10%

Speedup Energy Reduction

Im
pr

ov
em

en
to

ve
r B

as
el

in
e

Fig. 8: Speedup and energy reduction when RFVP does not drop memory requests and
sends them to the lower memory subsystem (the value-predicted line is still inserted
in the L1 cache).

yet commensurate with prior works on value prediction [Ceze et al. 2006; Goeman et al.
2001; Eickemeyer and Vassiliadis 1993]. However, RFVP focuses approximation only on
the small subset of loads that are both performance-critical and safe-to-approximate. Thus,
due to the small fraction of loads predicted with approximate values, RFVP leads to low
quality degradations (as we explain in Figure 10c).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge
 o

f L
oa

ds

backprop

fastwalsh

gaussian

heartw
all

matrix
mul

partic
lefilte

r

s.re
duce

sim
ilarity

score

s.srad2

geomean

strin
gmatch

Exact Value
Approximate Value

12
.5
%

25
.0
%

50
.0
%

12
.5
%

25
.0
%

50
.0
%

12
.5
%

25
.0
%

50
.0
%

12
.5
%

25
.0
%

50
.0
%

12
.5
%

25
.0
%

50
.0
%

12
.5
%

25
.0
%

50
.0
%

12
.5
%

25
.0
%

50
.0
%

12
.5
%

25
.0
%

50
.0
%

12
.5
%

25
.0
%

50
.0
%

12
.5
%

25
.0
%

50
.0
%

12
.5
%

25
.0
%

50
.0
%

Fig. 9: Fraction of load instructions that receive exact and approximate values during
execution for three different drop rates: 12.5%, 25%, and 50%.

Quality tradeoffs with drop rate. Drop rate is RFVP’s knob for navigating the quality
tradeoffs. It dictates the fraction of the value-predicted approximate load cache misses that
are also dropped. For example, with a 12.5% drop rate, RFVP drops one out of eight ap-
proximate load cache-misses. We examine the effect of this knob on performance, energy,
and quality by sweeping the drop rate from 12.5% to 90%. Figure 10 illustrates the effect of
drop rate on speedup (Figure 10a), energy reduction (Figure 10b), and quality degradation
(Figure 10c).

A:16 A. Yazdanbakhsh et al.

As the drop rate increases, so do the performance and energy benefits. However, the
benefits come with some cost in output quality. The average speedup ranges from 1.07×
with a 12.5% drop rate, to as much as 2.1× with a 90% drop rate. Correspondingly, the
average energy reduction ranges from 1.05× to 1.7× and the average quality degrada-
tion ranges from 6.5% to 31%.

Figure 10c shows that in all but one case, quality degradation increases slowly and
steadily as the drop rate increases. The clear exception is stringmatch. This application
searches a file with a large number of strings to find the lines that contain a search word.
This application’s input data set contains only English words with very low value locality.
The application outputs the indices of the matching lines, which have a very low margin
for error. Either the index is correctly identified or the output is wrong. The quality metric is
the percentage of the correctly identified lines. During search, even if a single character is
incorrect, the likelihood of matching the words and identifying the correct lines is low.

Even though stringmatch shows 61% speedup and 44% energy reduction with a 25%
drop rate, the corresponding quality loss of 60% is not acceptable. In fact, stringmatch
is an example of an application that cannot benefit from RFVP due to its low error toler-
ance.

As Figure 10 shows, each application tolerates the effects of RFVP approximation differ-
ently. For some applications, such as gaussian and fastwalsh, as the rate of approximation
(drop rate) increases, speedup, energy reduction and quality loss gradually increase. In
other applications such as matrixmul and similarityscore, the performance and energy
benefits increase sharply while the quality degradation increases gradually. For example in
similarityscore, increasing the drop rate from 25% to 50% yields a jump in speedup (from
28% to 59%) and energy reduction (from 10% to 57%), while quality loss rises by only 2%.

We conclude that RFVP provides high performance and energy efficiency benefits at ac-
ceptable quality loss levels (as shown in Figure 10), for applications whose performance
is most sensitive to memory bandwidth (as shown in Figure 1).

1.0
1.1
1.2
1.3
1.4
1.5
1.6 2.

2
3.
3

4.
2

8.
3

1.
7

9.
1

2.
4

3.
8

4.
7

1.
6

1.
8

1.
9

2.
0

2.
2

3.
5

Drop Rate = 12.5% Drop Rate = 25% Drop Rate = 50% Drop Rate = 60% Drop Rate = 75% Drop Rate = 80% Drop Rate = 90%

backprop fastwalsh gaussian heartwall matrixmul particlefilter s.reducesimilarityscore s.srad2 stringmatch geomean

2.
1

1.
7

1.
6

1.
9

2.
5

2.
9

3.
9

4.
0

2.
0

2.
6

3.
0

1.
6

1.
7

1.
8

2.
9

Sp
ee
du
p

(a) Speedup

1.0
1.1
1.2
1.3
1.4
1.5
1.6 1.

9
2.

5
2.

9
3.

9

4.
0

2.
0

2.
6

3.
0

1.
6

1.
7

1.
8

2.
9

1.
7

En
er

gy
 R

ed
uc

tio
n

backprop fastwalsh gaussian heartwall matrixmul particlefilter s.reducesimilarityscore s.srad2 stringmatch geomean

(b) Energy Reduction

Q
ua

lit
y

D
eg

ra
da

tio
n 100%

80%
60%
40%
20%
0%

backprop fastwalsh gaussian heartwall matrixmul particlefilter s.reducesimilarityscore s.srad2 stringmatch average

(c) Quality Degradation

Fig. 10: Effect of drop rate on RFVP’s (a) speedup, (b) energy reduction, and (c) quality
degradation.

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:17

RFVP with a different base predictor. RFVP can employ a variety of base predictors.
There is a tradeoff between the simplicity of the predictor and the performance and energy
reduction that it can provide. We study the performance and the energy reduction with
three different base predictors for a given quality loss, namely (1) Zero-Value, (2) Last-
Value, and (3) Two-Delta predictor. For each predictor, we pick the the drop-rate that leads
to less than 10% quality loss. Figure 11 shows the speedup and energy reduction of using
different predictors with RFVP for 10% quality loss. Using a Zero-Value predictor shows
almost no speedup and energy reduction benefit. Because simply predicting zero leads to
significant quality degradation beyond the target of 10%. Only in fastwalsh and heartwall ,
RFVP with the Last-Value predictor provides almost similar improvements as our Two-Delta
predictor. In these two applications, the majority of the loads are floating-point and the Two-
Delta predictor falls back to the simple Last-Value predictor. In the remaining applications,
our predictor that uses the two-delta algorithm provides significantly higher benefits. These
benefits are achieved with reasonably low area overhead as discussed above.

Design space exploration and Pareto analysis. The two main design parameters of our
GPU value predictor are: (1) the number of predictors per each warp and (2) the number
of entries in each predictor. We vary these two parameters to explore the design space of
the GPU predictor and perform a Pareto analysis to find the best configuration. Figure 12
shows the result of this design space exploration. The x-axis captures the complexity of the
predictor in terms of size (in KBytes). The y-axis is the Normalized Energy×Normalized
Delay×Error across all the GPU applications. The normalization baseline is our GPU sys-
tem without RFVP. This product simultaneously captures the three metrics of interest: per-
formance, energy, and quality. The optimal predictor minimizes both size (left on the x-axis),
energy dissipation, execution delay, and error (lower on the y-axis). In Figure 12, (xE,yTh)
represents a configuration with y predictors per warp and each with x entries. All the pre-
dictors are 4-way set associative.

In Figure 12, the knee of the curve is the most cost-effective point. This Pareto-optimal
design is the (192E,2Th) configuration, which requires 14 KB of storage, and is our de-
fault configuration.

This design space exploration shows that the number of entries in the prediction table
has a clear effect on the potential benefits of RFVP. Increasing the number of entries from
32 to 192 provides 1.4× improvement in Normalized Energy×Normalized Delay×Error.
More entries lower the chance of destructive aliasing in the prediction table that leads to
the frequent eviction of value history from the prediction tables. However, adding more
predictors per warp beyond a certain point does not provide any significant benefit in
terms of improving the output quality and instead wastes area and reduces the energy
saving. With fewer predictors, RFVP relies more on the value locality across the threads,

1.0
1.2
1.4
1.6
1.8
2.0

ba
ckp
rop

fas
twa
lsh

ga
us
sia
n

he
art
wa
ll

ma
trix
mu
l

pa
rtic
lefi
lte
r

sim
ilar
itys
co
re

s.r
ed
uc
e

s.s
rad
2

str
ing
ma
tch

ge
om
ea
n

Zero-Value Last-Value Two-Delta

Sp
ee
du
p

2.2 2.4

(a) Speedup

sim
ilar

itys
co

re

1.94 1.98

1.0
1.2
1.4
1.6
1.8
2.0

ba
ckp

rop

fas
twals

h

ga
us

sia
n

he
art

wall

matr
ixm

ul

pa
rtic

lefi
lte

r

sim
ilar

itys
co

re

s.r
ed

uc
e

s.s
rad

2

str
ing

matc
h

ge
om

ea
n

Zero-Value Last-Value Two-Delta

En
er

gy
 R

ed
uc

tio
n

(b) Energy Reduction

Fig. 11: Effect of different value predictors on RFVP’s (a) speedup and (b) energy re-
duction, with 10% quality loss.

A:18 A. Yazdanbakhsh et al.

2260 20 40 60 80 100 120 140 160 180 200

0.2

.04

.08

.12

.16

Predictor Size (KB)
N

or
m

al
iz

ed
 E

ne
rg

y
✕

N

or
m

al
iz

ed
 D

el
ay

 ✕
 E

rro
r

RFVP GPU Predictor (192E,2Th) ≈ 14 KB

(128E,2Th)(32E,2Th) (192E,2Th) (64E,8Th)
(192E,32Th)

(64E,2Th) (32E,8Th)
(128E,32Th)(64E,32Th)(192E,8Th)(128E,8Th)(32E,32Th)

Fig. 12: GPU value predictor design space exploration and Pareto analysis for RFVP.
The point (xE,yTh) represents a configuration with y predictors per warp and each
with x entries. All the predictors are 4-way set associative. The predictor configuration
of (192E,2Th), which is our default configuration, is the most Pareto optimal design
point. In this graph, lower and left is better. The normalization baseline our GPU
system without RFVP.

which is the common case in GPU applications [Samadi et al. 2014; Arnau et al. 2014].
Exploiting value similarity in GPU applications enables RFVP to use a smaller predic-

tor without significant degradation in output quality. Thus, a 14 KB predictor per each
SM, which is the Pareto optimal design, exploits value similarity and produces significant
gains in performance and energy saving while maintains high output quality.

Cache sensitivity study. We compare the benefits of RFVP with the benefits that can be
achieved with simply enlarging the caches by same amount as the RFVP predictor size.
Similar to other works [Rogers et al. 2012; Bakhoda et al. 2009], we do not re-compile
the source code for different cache sizes. We found that, for the studied applications, the
increased L1 size in each SM results in 4% performance improvement and 1% energy
savings on average. The increased L2 size yields only 2% performance improvement and
1% energy savings on average. RFVP provides significantly higher benefits with the same
overhead by trading output quality for performance and energy improvements.

Comparison with loop perforation. With 10% quality loss, loop perforation [Sidiroglou-
Douskos et al. 2011] provides 18% average speedup (max 25%) and 19% average energy
reduction (max 28%). In contrast, RFVP provides 36% average speedup and 27% aver-
age energy reduction. Our results are on par with previous studies on loop perforation in
GPUs [Samadi et al. 2013]. Loop perforation leads to lower performance because simply
skipping loop iterations leads to significant output quality loss that limits the use of loop
perforation.

7. EFFECT OF RFVP ON CPU-BASED SYSTEMS
To understand the effectiveness of of RFVP in a system where latency is the primary
concern, we investigate the integration of RFVP in a single-core CPU system.

7.1. Methodology
Applications. As Table III shows, we evaluate RFVP for CPUs using an approximable
subset of SPEC CFP 2000/2006. The applications come from the domains of scientific
computing and optimization. As the work in [Sethumadhavan et al. 2012] discusses, the
CFP2000/2006 benchmarks have some natural tolerance to approximation. When these
floating point applications discretize continuous-time inputs, the resulting data is naturally
imprecise. We compile the benchmarks using gcc version 4.6 with -O3 to enable compiler
optimizations.

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:19

Table III: Evaluated CPU applications, input data, and quality metrics.

Name Suite Domain Quality
Metric Evaluation Set Approx

Loads

bwaves CFP2006 Scientific NRMSE Reference Set 26

cactusADM CFP2006 Scientific NRMSE Reference Set 28

fma3D CFP2000 Scientific NRMSE Reference Set 27

gemsFDTD CFP2006 Scientific NRMSE Reference Set 23

soplex CFP2006 Optimization NRMSE Reference Set 21

swim CFP2000 Scientific NRMSE Reference Set 23
C

PU
 A

pp
lic

at
io

ns

Quality metrics. As discussed below, our subset of the SPEC applications produce nu-
merical outputs. Therefore, we use NRMSE (see Section 5.1) to measure the quality loss.
For swim, the output consists of all diagonal elements of the velocity fields of a fluid model.
In fma3d , the outputs are position and velocity values for 3D solids. In bwaves, the outputs
define the behavior of blast waves in 3D viscous flow. The cactusADM benchmark outputs
a set of coordinate values for space-time in response to matter content. The soplex bench-
mark solves a linear programming problem and outputs the solution. Finally, GemsFDTD
outputs the radar cross section of a perfectly conducting object using the Maxwell equa-
tions.

Load identification. We use an approach similar to the one we used in our GPU evaluation
to identify the loads that are both performance-critical and safe-to-approximate. We use
Valgrind with the Cachegrind tool [Nethercote and Seward 2007] for final quality of result
evaluation. We modify Cachegrind to support rollback-free value prediction. Valgrind is fast
enough to run our applications until completion with SPEC reference data sets.

Cycle-level simulations. We implement RFVP in the MARSSx86 cycle-level simula-
tor [Patel et al. 2011]. The baseline memory system includes a 32 KB L1 cache, a 2 MB
LLC, and external memory with 200-cycle access latency. In modern processors, the LLC
size is often 2 MB × number of cores. Thus, we use a 2 MB LLC for our single core experi-
ments. Furthermore, the simulations accurately model port and interconnect contention at
all levels of the memory hierarchy. The core model follows the Intel Nehalem microarchi-
tecture [Molka et al. 2009]. Because simulation until completion is impractical for SPEC
applications with reference data sets, we use Simpoint [Hamerly et al. 2004] to identify the
representative application phases. We perform all the measurements for the same amount
of work in the application using markers in the code. Table IV summarizes the microarchi-
tectural parameters for our simulated CPU. As in GPU evaluations, we run each application
10 times with different input datasets and report the average.

Table IV: Simulated CPU microarchitectural parameters.
Processor: Fetch/Issue Width: 4/5, INT ALUs/FPUs: 6/6, Load/Store Queue: 48-entry/32-entry, ROB Entries:
128, Issue Queue Entries: 36, INT/FP Physical Registers: 256/256, Branch Predictor: Tournament 48 KB,
BTB Sets/Ways: 1024/4, RAS Entries: 64, Dependence Predictor: 4096-entry Bloom Filter, ITLB/DTLB Entries:
128/256; L1: 32 KB I$, 32 KB D$, 64B line, 8-Way, Latency: 2 cycles; L2: 2 MB, 64B line, 8-Way, Latency: 20
cycles; Memory Latency: 200 cycles

Energy modeling and overheads. We use McPAT [Li et al. 2009] and CACTI [Murali-
manohar et al. 2007] to measure energy benefits while considering all the overheads asso-
ciated with RFVP. The caching overheads are incorporated into the statistics that Marssx86
produces for McPAT. As in our GPU evaluations, we estimate the prediction table overhead
using CACTI version 6.5, and extract the arithmetic operations overhead from McPAT. The
energy evaluations use a 45 nm process, 0.9 Vdd and 3.0 GHz core clock frequency.

A:20 A. Yazdanbakhsh et al.

7.2. Results
Figure 13 shows the speedup, energy reduction, and quality degradation with RFVP. The
baseline is the CPU system with no RFVP. Our proposed RFVP technique aims to mitigate
the long memory access latencies in a CPU. Thus, RFVP predicts all missing approximate
load requests but does not drop any of them. We experimented with dropping requests
in the CPU experiments. However, there was no significant benefit since these single-
threaded CPU workloads are not sensitive to the off-chip communication bandwidth.

1.0

1.1

1.2

1.3

1.4

bwaves cactusADM fma3d gemsFDTD soplex swim geomean

Sp
ee
du
p

(a) Speedup

error
1.8%
0.30%
1.60%
0.50%

1.00

1.05

1.10

1.15

1.20

En
er

gy
 R

ed
uc

tio
n

bwaves cactusADM fma3d gemsFDTD soplex swim geomean

(b) Energy Reduction

2

g

Q
ua

lit
y

D
eg

ra
da

tio
n100%

80%

60%

40%

20%

0%
1.8% 0.3% 1.6% 0.5% 1.8% 0.2% 0.9%

bwaves cactusADM fma3d gemsFDTD soplex swim geomean

(c) Quality Degradation

Fig. 13: Effect of RFVP in a single-core CPU: (a) speedup, (b) energy reduction, and (c)
quality degradation.

As Figure 13 shows, RFVP provides 9.7% average speedup and 6.2% energy reduction
with a single-core CPU. The average quality loss is 0.9%.

While RFVP’s benefits on the CPU system are lower than its benefits on the GPU
system, the output quality degradations on the CPU system are also comparatively low.
The GPU applications in our workload pool are more amenable to approximation than
the CPU applications. That is, a larger fraction of the performance-critical loads are
safe-to-approximate in GPU workloads. Nevertheless, Figure 13 shows that one CPU
application (bwaves) still gains 19% speedup and 16% energy reduction with only 1.8%
quality degradation.

To better understand RFVP’s performance and energy benefits on the CPU system, we
examine MPKI reduction in the L2 cache, and present the results in Table V. RFVP reduces
MPKI by enabling the core to continue without stalling for memory to supply data. Usually,
a larger reduction in MPKI leads to larger benefits. For example, for bwaves, the L2 MPKI
reduces from 11.6 to 2.2, leading to 19% speedup and 16% energy reduction.

Table V: L2 MPKI comparison with and without RFVP on the CPU system.
bwaves cactusADM fma3d gemsFDTD soplex swim

Baseline 11.6 5 1.5 23.1 26.5 3.9
RFVP 2.2 3.9 0.6 10.3 21.4 2.4

To understand the low quality degradations of the CPU applications with RFVP, we also
study the distribution of the fraction of the load values that receive approximate and precise
values during execution. The trends are similar to the ones that we observed for the GPU
experiment (see Figure 9). In the CPU case, on average only 1.5% of all the dynamic loads
receive imprecise values.

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:21

Due to the overall low rate at which load instructions return imprecise data to the CPU,
the applications experience low quality degradation in the final output. In fact, RFVP on
a CPU system achieves performance and energy gains that are one order of magnitude
greater than the quality loss.

The value prediction accuracy in the CPU system is on par with prior work [Ceze et al.
2006; Goeman et al. 2001; Eickemeyer and Vassiliadis 1993] and the GPU system. Once
again, RFVP focuses approximation on the safe-to-approximate loads that do not signifi-
cantly degrade the output quality. These results show that RFVP effectively mitigates the
long memory access latency with a low degradation in output quality.

8. RELATED WORK
To our knowledge, this paper is the first work that: (1) provides a mechanism for approxi-
mate value prediction for load instructions in GPUs, (2) enables memory bandwidth savings
by enabling the dropping value-predicted memory requests at acceptable output quality
loss levels, and (3) develops a new multiple-value prediction mechanism for GPUs that
enables the prediction of entire cache lines.

Below, we discuss related works in (1) approximate computing, (2) value prediction, and
(3) load value approximation.

General-purpose approximate computing. Recent work explored a variety of approx-
imation techniques. However, approximation techniques that tackle memory subsystem
performance bottlenecks are lacking. This paper defines a new technique that mitigates
the memory subsystem bottlenecks of long access latency and limited off-chip bandwidth.

EnerJ [Sampson et al. 2011] is a language for approximate computing. Its corresponding
architecture, Truffle [Esmaeilzadeh et al. 2012a], leverages voltage overscaling, floating
point bitwidth reduction, and reduced DRAM refresh. We borrow the programming con-
structs and ISA augmentation approach from EnerJ and Truffle, respectively. However, we
define our own novel microarchitectural approximation technique. EnerJ and Truffle reduce
energy consumption in CPUs, while we improve both performance and energy efficiency
in GPUs as well as CPUs. The work in [Sampson et al. 2013] and [Liu et al. 2011] de-
sign approximate DRAM and Flash storage blocks. Flikker [Liu et al. 2011] reduces the
DRAM refresh rate when approximate data is stored in main memory. The work in [Arnau
et al. 2014] uses hardware memoization to reduce redundant computation in GPUs. How-
ever, while this work eliminates execution within the SMs, it still requires data inputs to be
read from memory. Some bandwidth savings may arise by eliminating these executions,
but our work fundamentally differs in that it attacks the bandwidth bottleneck directly by
eliminating memory traffic. The work in [Sampson et al. 2013] uses faulty flash blocks for
storing approximate data to prolong its lifetime. This work also aims to improve the den-
sity and access latency of flash memory using multi-level cells with small error margins.
Luo et al. [Luo et al. 2014] describe a heterogeneous-reliability memory system where a
part of memory is unreliable and thus can output approximate data. They show that such
a memory system can lead to significant cost savings, but do not optimize performance.
The technique in [Sartori and Kumar 2013] exploits approximation to mitigate branch and
memory divergence in GPUs. In case of branch divergence, authors force all the threads
to execute the most popular path. In case of memory divergence, they force all the threads
to access the most commonly demanded memory block. Their work is agnostic to cache
misses and does not leverage value prediction or drop memory requests. In contrast, our
new approximation technique predicts the value of the approximate loads that miss in the
cache without ever recovering from the misprediction. Further, we reduce the bandwidth
demand and memory contention by dropping a fraction of the approximate load requests
after predicting their value. Our approach can be potentially combined with many of the

A:22 A. Yazdanbakhsh et al.

described prior works on approximation [Luo et al. 2014; Arnau et al. 2014; Sampson et al.
2013; Liu et al. 2011; Sidiroglou-Douskos et al. 2011], since it entirely focuses on mitigating
memory latency and bandwidth bottlenecks.

Value prediction. RFVP takes inspiration from prior work that explores exact value pre-
diction [Perais and Seznec 2014; Collange et al. 2010; Zhou and Conte 2005; Mutlu et al.
2005; Mutlu et al. 2003; Goeman et al. 2001; Thomas and Franklin 2001; Sazeides and
Smith 1997; Lipasti et al. 1996; Eickemeyer and Vassiliadis 1993]. However, our work fun-
damentally differs from traditional value prediction techniques because it does not check
for mispredictions and does not recover from them. Furthermore, we drop a fraction of the
load requests to reduce off-chip memory traffic. Among these techniques, Zhou et al. [Zhou
and Conte 2005] and Mutlu et al. [Mutlu et al. 2005] use value prediction to speculatively
prefetch cache misses that are normally serviced sequentially. They used value prediction
to break dependence chains where one missing load’s address depends on the previous
missing load’s value. However, they do not allow the speculative state to contaminate the
microarchitectural state of the processor or the memory. Since their technique only initi-
ates prefetches, they do not need to recover from value mispredictions. Our technique,
however, is not used for prefetch requests. Instead, the predictor directly feeds the pre-
dicted value to the processor as an approximation of the load value, taking advantage of
the error tolerance of applications.

Load value approximation. In our previous work [Thwaites et al. 2014], we introduced the
RFVP technique for a conventional CPU processor to lower the effective memory access
latency. Later, in a concurrent effort [San Miguel et al. 2014], San Miguel et al. proposed
a technique that uses value prediction without checks for misprediction to address the
memory latency bottleneck in CPU based systems. San Miguel et al. [San Miguel et al.
2014] corroborated our reported results in [Thwaites et al. 2014]. Our work differs from our
previous work [Thwaites et al. 2014] and the concurrent work [San Miguel et al. 2014] as
follows: (1) we develop techniques for GPU processors, targeting the memory bandwidth
bottleneck rather than latency, showing that RFVP is an effective approach for mitigating
both latency and bandwidth bottlenecks; (2) we utilize the value similarity of accesses
across adjacent threads in GPUs to develop a low-overhead multi-value predictor capable
of producing values for many simultaneously-missing loads as they execute in lock-step in
GPU cores; (3) we drop a portion of cache-miss load requests to fundamentally reduce the
memory bandwidth demand in GPUs.

9. CONCLUSIONS
This paper introduces Rollback-Free Value Prediction (RFVP) and demonstrates its effec-
tiveness in tackling two major memory system bottlenecks: (1) limited off-chip bandwidth
and (2) long memory access latency. RFVP predicts the values of safe-to-approximate
loads only when they miss in the cache and drops a fraction of them without checking for
mispredictions or recovering from them. Additionally, we utilize programmer annotations to
guarantee safety, while our compilation workflow applies approximation only to the most
performance-critical cache-missing loads and maintaining high output quality.

We develop a lightweight and fast-learning prediction mechanism for GPUs, which is
capable of (1) predicting values in an entire cache line and (2) adapting to rapidly-changing
value patterns between individual loads with low hardware overhead.

RFVP uses predicted values both to hide the memory latency and ease bandwidth limi-
tations. The drop rate is a knob that controls the tradeoff between quality of results and per-
formance/energy gains. Our extensive evaluation shows that RFVP, when used in GPUs,
yields significant performance improvements and energy reductions for a wide range of
quality loss levels. As the acceptable quality loss increases, the benefits of RFVP increase.
Even at a modest 1% acceptable quality loss, RFVP improves performance and reduces

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:23

energy consumption by more than 20% in some applications. We also evaluate RFVP’s
latency benefits for a single core CPU. The results show performance improvements and
energy reductions for a wide variety of applications with quality loss less than 1%. These
results confirm that RFVP is a promising technique to tackle the memory bandwidth and
latency bottlenecks in applications that exhibit some level of error tolerance.

APPENDIX
A.1. Code Examples from Approximate Benchmarks
Figure 14 shows code examples from some of our studied applications to provide insights
into where source of RFVP’s benefits are coming from. The gray shaded variables are
marked by the programmer. Similar to other works [Park et al. 2015; Sampson et al. 2011],
we rely on the programmer to annotate the safe-to-approximate variables. The compilation
workflow automatically infers the safe-to-approximate loads (as described in Section 3).
In Figure 14, we show the safe-to-approximate loads with underline. These code exam-
ples show that safe-to-approximate loads are mostly array elements and can access both
integer and floating-point datatypes. However, in some scenarios, it might not be safe to
approximate array elements. In Figure 14d, we observe that the elements of array d iS are
used as index of array d c. Thus, it is not safe to approximate the loads from this array.

float newVal;
for (int i = 0; i < col4; i++)
{

float4 v1 = matrix1 [i];
float4 v2 = matrix2 [i];
newVal += v1.x * v2.x;
newVal += v1.y * v2.y;
newVal += v1.z * v2.z;
newVal += v1.w * v2.w;

}

(a) Code example from matrixmul

float likelihoodSum;
for (x = 0; x < numOnes; x++)
{

likelihoodSum +=
pow((I [ind[i * num + x]]

- 100), 2) -
pow((I [ind[i * num + x]]

- 228), 2))
/ 50.0;

}

(b) Code example from particlefilter

float d psum, d psum2;
for(i=2; i<=df; i=2*i)
{

d_psum[tx] = d psum [tx] + d psum [tx-i/2];
d_psum2[tx] = d psum2 [tx] + d psum2 [tx -i/2];

}

(c) Code example from s.reduce

int d cN, d cS, d cW, d cE;
d_cN = d c [ei];
d_cS = d c [d_iS[row] + d_Nr*col];
d_cW = d c [ei];
d_cE = d c [row + d_Nr * d_jE[col]];

(d) Code example from s.srad2

Fig. 14: Code examples from some of the evaluated benchmarks. The gray shaded
variables are the variables that are annotated by the programmer. The underlined
variables are the safe-to-approximate loads that can be value-predicted by RFVP.

ACKNOWLEDGMENTS

We thank anonymous reviewers of ACM TACO as well as anonymous reviewers of PACT 2014, ASPLOS 2015,
and ISCA 2015, who reviewed previous versions of this work. This work was supported by a Qualcomm Innovation
Fellowship, Microsoft Research PhD Fellowship, Nvidia, NSF awards #1409723, #1423172, #1212962 and CCF
#1553192, Semiconductor Research Corporation contract #2014-EP-2577, and a gift from Google.

REFERENCES
J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. 1983. Conversion of Control Dependence to Data

Dependence. In POPL.
Carlos Alvarez, Jesus Corbal, and Mateo Valero. 2005. Fuzzy Memoization for Floating-Point Multimedia Appli-

cations. IEEE Trans. Comput. 54, 7 (2005).

A:24 A. Yazdanbakhsh et al.

Renée St Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, Hadi Esmaeilzadeh, Arjang Hassibi, Luis
Ceze, and Doug Burger. 2014. General-Purpose Code Acceleration with Limited-Precision Analog Compu-
tation. In ISCA.

Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis. 2014. Eliminating Redundant Fragment
Shader Executions on a Mobile GPU via Hardware Memoization. In ISCA.

Woongki Baek and Trishul M. Chilimbi. 2010. Green: A Framework for Supporting Energy-Conscious Program-
ming using Controlled Approximation. In PLDI.

A Bakhoda, G.L. Yuan, W.W.L. Fung, H. Wong, and T.M. Aamodt. 2009. Analyzing CUDA Workloads using a
Detailed GPU Simulator. In ISPASS.

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying Quantitative Reliability for Programs that
Execute on Unreliable Hardware. In OOPSLA.

Luis Ceze, Karin Strauss, James Tuck, Josep Torrellas, and Jose Renau. 2006. CAVA: Using Checkpoint-Assisted
Value Prediction to Hide L2 Misses. ACM TACO 3, 2 (2006).

Lakshmi N. Chakrapani, Bilge E. S. Akgul, Suresh Cheemalavagu, Pinar Korkmaz, Krishna V. Palem, and Bala-
subramanian Seshasayee. 2006. Ultra-efficient (Embedded) SoC Architectures based on Probabilistic CMOS
(PCMOS) Technology. In DATE.

Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha Lee, and Kevin Skadron.
2009. Rodinia: A Benchmark Suite for Heterogeneous Computing. In IISWC.

Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. 2010. Single-chip Heterogeneous Computing: Does
the Future Include Custom Logic, FPGAs, and GPUs?. In MICRO.

Sylvain Collange, David Defour, and Yao Zhang. 2010. Dynamic Detection of Uniform and Affine Vectors in
GPGPU Computations. In Euro-Par (Parallel Processing Workshops).

Jamison D Collins, Hong Wang, Dean M Tullsen, Christopher Hughes, Yong-Fong Lee, Dan Lavery, and John P
Shen. 2001. Speculative Precomputation: Long-Range Prefetching of Delinquent Loads. In ISCA.

Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. 2010. Relax: An Architectural Framework for
Software Recovery of Hardware Faults. In ISCA.

Richard J. Eickemeyer and Stamatis Vassiliadis. 1993. A Load-Instruction Unit for Pipelined Processors. 37, 4
(1993).

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012a. Architecture Support for Disciplined
Approximate Programming. In ASPLOS.

Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. 2012b. Neural Acceleration for General-
Purpose Approximate Programs. In MICRO.

Bart Goeman, Hans Vandierendonck, and Koenraad De Bosschere. 2001. Differential FCM: Increasing Value
Prediction Accuracy by Improving Table usage Efficiency. In HPCA.

Greg Hamerly, Erez Perelman, and Brad Calder. 2004. How to use Simpoint to Pick Simulation Points. ACM
SIGMETRICS Performance Evaluation Review 31, 4 (2004).

Bingsheng He, Wenbin Fang, Qiong Luo, Naga K Govindaraju, and Tuyong Wang. 2008. Mars: a MapReduce
Framework on Graphics Processors. In PACT.

Stephen W Keckler, William J Dally, Brucek Khailany, Michael Garland, and David Glasco. 2011. GPUs and the
future of parallel computing. IEEE Micro 5 (2011).

Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M Aamodt, and Vi-
jay Janapa Reddi. 2013. GPUWattch: Enabling Energy Optimizations in GPGPUs. In ISCA.

Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. Mc-
PAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and ManyCore Architectures.
In MICRO.

Xuanhua Li and Donald Yeung. 2007. Application-Level Correctness and its Impact on Fault Tolerance. In HPCA.
Mikko H. Lipasti and John Paul Shen. 1996. Exceeding the Dataflow Limit via Value Prediction. In MICRO.
Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. 1996. Value Locality and Load Value Prediction.

In ASPLOS.
Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin G. Zorn. 2011. Flikker: Saving Refresh-

Power in Mobile Devices through Critical Data Partitioning. In ASPLOS.
Yixin Luo, Sriram Govindan, Bhanu P Sharma, Mark Santaniello, Justin Meza, Apoorv Kansal, Jie Liu, Badriddine

Khessib, Kushagra Vaid, and Onur Mutlu. 2014. Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory. In DSN.

Divya Mahajan, Kartik Ramkrishnan, Rudra Jariwala, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites,
Anandhavel Nagendrakumar, Abbas Rahimi, Hadi Esmaeilzadeh, and Kia Bazargan. 2015. Axilog: Abstrac-
tions for Approximate Hardware Design and Reuse. In IEEE Micro.

RFVP: Rollback-Free Value Prediction with Safe to Approximate Loads A:25

D. Molka, D. Hackenberg, R. Schone, and M.S. Muller. 2009. Memory Performance and Cache Coherency Effects
on an Intel Nehalem Multiprocessor System. In PACT.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. 2007. Optimizing NUCA Organizations and
Wiring Alternatives for Large Caches with CACTI 6.0. In MICRO.

Makoto Murase. 1992. Linear feedback Shift Register. US Patent.
Onur Mutlu, Hyesoon Kim, and Yale N Patt. 2005. Address-value delta (AVD) prediction: Increasing the effec-

tiveness of runahead execution by exploiting regular memory allocation patterns. In Proceedings of the 38th
annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society.

Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. 2003. Runahead Execution: An Effective Alternative
to Large Instruction Windows. IEEE Micro 23 (2003).

Nicholas Nethercote and Julian Seward. 2007. Valgrind: a Framework for Heavyweight Dynamic Binary Instru-
mentation. In PLDI.

Jongse Park, Hadi Esmaeilzadeh, Xin Zhang, Mayur Naik, and William Harris. 2015. FlexJava: Language Support
for Safe and Modular Approximate Programming. In FSE.

Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. 2011. MARSSx86: A Full System Simulator for x86
CPUs. In DAC.

Gennady Pekhimenko, Evgeny Bolotin, Mike. O’Connor, Onur Mutlu, Todd. Mowry, and Stephen Keckler. 2015.
Toggle-Aware Compression for GPUs. Computer Architecture Letters (2015).

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry.
2012. Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches. In PACT.

A. Perais and A. Seznec. 2014. Practical Data Value Speculation for Future High-end Processors. In HPCA.
Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang, and Yan Solihin. 2009. Scaling the Band-

width Wall: Challenges in and Avenues for CMP scaling. In ISCA.
Timothy Rogers, Mike O’Connor, and Tor Aamodt. 2012. Cache-Conscious Wavefront Scheduling. In MICRO.
Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke. 2014. Paraprox: Pattern-Based

Approximation for Data Parallel Applications. In ASPLOS.
Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Scott Mahlke. 2013. SAGE: self-

tuning approximation for graphics engines. In MICRO.
A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman. 2011. EnerJ: Approximate

Data Types for Safe and General Low-Power Computation. In PLDI.
Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. 2013. Approximate Storage in Solid-state Memo-

ries. In MICRO.
Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. December, 2014. Load Value Approximation. In

MICRO.
J. Sartori and R. Kumar. 2013. Branch and Data Herding: Reducing Control and Memory Divergence for Error-

Tolerant GPU Applications. Multimedia, IEEE Transactions on 15, 2 (2013).
Yiannakis Sazeides and James E. Smith. 1997. The Predictability of Data Values. In MICRO.
S. Sethumadhavan, R. Roberts, and Y. Tsividis. 2012. A Case for Hybrid Discrete-Continuous Architectures.

Computer Architecture Letters 11, 1 (2012).
Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing Performance

vs. Accuracy Trade-offs with Loop Perforation. In FSE.
R. Thomas and M. Franklin. 2001. Using Dataflow Based Context for Accurate Value Prediction. In PACT.
Bradley Thwaites, Gennady Pekhimenko, Hadi Esmaeilzadeh, Amir Yazdanbakhsh, Onur Mutlu, Jongse Park,

Girish Mururu, and Todd Mowry. August, 2014. Rollback-Free Value Prediction with Approximate Loads. In
PACT.

Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek Bhowmick, Rachata Ausavarungnirun, Chita
Das, Mahmut Kandemir, Todd C Mowry, and Onur Mutlu. 2015. A Case for Core-Assisted Bottleneck Accel-
eration in GPUs: Enabling Flexible Data Compression with Assist Warps. In ISCA.

Amir Yazdanbakhsh, Divya Mahajan, Bradley Thwaites, Jongse Park, Anandhavel Nagendrakumar, Sindhuja
Sethuraman, Kartik Ramkrishnan, Nishanthi Ravindran, Rudra Jariwala, Abbas Rahimi, Hadi Esmaeilzadeh,
and Kia Bazargan. 2015. Axilog: Language Support for Approximate Hardware Design. In DATE.

Huiyang Zhou and Thomas M. Conte. 2005. Enhancing Memory-Level Parallelism via Recovery-Free Value Pre-
diction. IEEE Trans. Comput. 54, 7 (2005).

	Introduction
	Architecture Design for RFVP
	Rollback-Free Value Prediction
	Safe Approximation with RFVP
	Instruction Set Architecture to Support RFVP
	Integrating RFVP into the Microarchitecture

	Language and Software Support for RFVP
	Targeting Performance-Critical Loads
	Providing Safety Guarantees
	Drop-Rate Selection

	Value Predictor Design for RFVP
	Base Predictor for RFVP
	Value Predictor Design for GPUs

	Experimental Methodology
	Experimental Methodology for GPUs

	Experimental Results
	GPU Measurements

	Effect of RFVP on CPU-Based Systems
	Methodology
	Results

	Related Work
	Conclusions
	Code Examples from Approximate Benchmarks

