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Abstract
Approximate accelerators are an emerging type of acceler-

ator that trade output quality for significant gains in perfor-
mance and energy efficiency. Conventionally, the approximate
accelerator is always invoked in lieu of a frequently executed
region of code (e.g., a function in a loop). However, always
invoking the accelerator results in a fixed degree of error that
may not be desirable. Our core idea is to predict whether each
individual accelerator invocation will lead to an undesirable
quality loss in the final output. We therefore design and eval-
uate predictors that only leverage information local to that
specific potential invocation. If the predictor speculates that a
large quality degradation is likely, it directs the core to run the
original precise code instead. We use neural networks as an
alternative prediction mechanism for quality control that also
provides a realistic reference point to evaluate the effective-
ness of our table-based predictor. Our evaluation comprises
a set of benchmarks with diverse error behavior. For these
benchmarks a table-based predictor with eight tables each of
size 0.5KB achieves 2.6× average speedup and 2.8× average
energy reduction with a 5% error requirement. The neural
predictor yields 4% and 17% larger performance and energy
gains, respectively. On average, an idealized oracle predictor
with prior knowledge about all invocations achieves only 26%
more performance and 37% more energy benefits compared
to the table-based predictor.

1. Introduction
With the effective end of Dennard scaling, per-transistor speed
and efficiency improvements are diminishing [10]. Energy effi-
ciency now fundamentally limits microprocessor performance.
As a result, there is an increasing interest in specialization and
acceleration that trade generality for significant gains in per-
formance and efficiency. Designing application-specific ICs
may provide three orders of magnitude improvement in effi-
ciency and speed. However, designing ASICs for the massive
and rapidly-evolving body of general-purpose applications
is currently impractical. Programmable accelerators, such
as FPGAs and GPUs, provide a middle ground that exploit
some characteristic of the application domain to achieve per-
formance and efficiency gains at the cost of generality. For
instance, FPGAs exploit copious fine-grained irregular paral-
lelism but perform poorly when complex and frequent accesses
to memory are required. GPUs exploit data-level parallelism
and SIMT execution but lose efficiency when threads diverge.

There is an emerging type of accelerators, approximate ac-
celerators [12, 2, 36, 9, 4, 14, 20] that exploit application’s
tolerance to inexact computation. As the growing body of re-
cent work in approximation shows [8, 11, 26, 1, 28, 35], many
classes of applications including web search, data analytics,
machine learning, multimedia, cyber-physical systems, vision,
and speech recognition can tolerate small errors in computa-
tion. For these classes of applications, trading off computation

Core Approximate 
Accelerator

Error
PredictorPrecise NOT(Precise)

Input FIFO

Output FIFO

Figure 1: Architectural overview of our quality control approach.

accuracy can potentially lead to gains in performance and
energy efficiency.

Conventionally, the approximate accelerator is always in-
voked in lieu of a frequently executed region of code, e.g.,
function in a loop. Always invoking the accelerator results in
a fixed degree of error that may not conform with the user re-
quirements limiting its applicability. The core idea behind this
work is to predict whether or not each individual accelerator
invocation will lead to an undesirable quality loss in the final
output. To realize this idea, we design and evaluate predictors
that only leverage information local to that specific potential
invocation. If the predictor speculates that a large quality
degradation is likely, it directs the processor core to run the
original precise code thereby reducing the final output error.
The predictor is in command of all accelerator invocations.

We are inspired by the large body of work on branch predic-
tion, value prediction, and load-store dependence prediction.
The unique property of this work is the use of prediction
for quality control in approximate acceleration. This work
builds on the prior work on prediction and extends it to an
emerging direction of approximate computing. Furthermore,
even though there have been several works on software-based
quality control [26, 15, 3], we address the lack of microar-
chitectural mechanisms that leverage runtime information for
quality control.
2. Overview
As shown in Figure 1, the error predictor sits between the core
and the accelerator and determines whether the core should
execute the original function or invoke the accelerator. To
realize this approach, we answer the following questions:

1) What insights from the accelerator behavior can guide
the predictor design? To understand the approximate ac-
celerator behavior, we investigate different application’s error
distribution when approximated with NPUs. Figure 2 depicts
the CDF (cumulative distribution function) plot of the error
incurred by each element of the application output. The appli-
cation output comprises groups of elements–an image consists
of pixels; a vector consists of scalars; etc. The CDF shows
that only a small fraction (0%-20%) of the output elements
see large errors. This finding shows that a prediction mech-
anism that can filter out these cases not only can eliminate
large errors but also can preserve the significant gains from
approximate acceleration.

1



0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Error

0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

 o
f O

ut
pu

t E
le

m
en

ts
blackscholes
fft
jmeint
inversek2j
jpeg
kmeans
sobel

Figure 2: Cumulative distribution function (CDF) plot of the applica-
tions output error. A point (x,y) indicates that y fraction of the output
elements see error less than or equal to x.

2) Given a final quality requirement, how much error in
the accelerator is acceptable? As shown in Figure 1, the
predictor only has the information provided to the accelerator.
As the accelerator only approximates a region of the code, the
predictor can only make local decisions based on the input
vectors with no knowledge of how this local error manifests in
the final application output. The main challenge is to devise a
compilation or a runtime system that can guide the predictor’s
local decisions while considering the final program output.
This challenge is strongly correlated with another challenge,
which is, how much accelerator error is acceptable given a
final quality requirement. Hence, the prediction-based quality
control should provide a knob to the compiler or the run-
time system to navigate the tradeoff between the quality and
performance-efficiency gains. To address these challenges, we
develop a thresholding mechanism that guides the predictor.
Section 4 provides this algorithm and elaborates on how the
predictor is trained.

3) What accelerator information is needed and is available
to perform the prediction? The approximate accelerator
accelerates a function with well-defined inputs and outputs.
The prediction mechanism defined here leverages this input-
output interface of the accelerator. As the accelerator error
contributes to the final output error and hence a mechanism
to control accelerator error can control the final output error.
However, for a given application, the accelerator is constant
which makes the accelerator error only a function of the in-
put vector. This insight is significant because unlike branch
predictors that rely on the history of previous branches, our
error predictors cannot use history information as it would
require running both the accelerator and the original code. Our
predictor utilizes the accelerator input vector to predict if a
particular invocation gives undesirable error. This mechanism
can administer the accelerator error by limiting the accelerator
invocations to the inputs that give error within a bound.

4) What is the prediction algorithm? We explore two
types of predictors: a table-based predictor and a neural pre-
dictor. Both prediction mechanisms comprise two phases -
training and runtime. For the table-based design, in both the
phases the predictor uses a simple circuitry to generate a hash
from the accelerator inputs. During the predictor-training
phase the hash generated indexes into an entry in the predictor

table and this hash is used to fill the predictor contents. The
predictor is trained to invoke the accelerator if the accelerator
error is below the threshold and trained to run the original
function if the accelerator error is above the threshold. Hence,
this training generates a configuration that maps a hash to a
single bit decision. The predictor needs to be retrained for
different applications as accelerator error is a function of the
application. During the runtime phase, a hash is calculated
for the accelerator inputs to index into the prediction table to
give a decision. Hash collisions are imminent and this destruc-
tive aliasing in the tables can lead to a significant decrease
in the prediction accuracy. We address this challenge with
careful hash function design that tries to minimize conflicts
between different input sets and the use of multiple predic-
tion tables(a small ensemble of predictors, Section 3 provides
further details). In the case of neural predictor, we use a mul-
tilayer perceptron that takes in the input vector and produces
a single-bit output as the prediction. The neural predictor
is trained during compile time using a set of representative
training inputs and the configuration is used at runtime to train
the predictor and finally produce the prediction. Section 3
describes these predictors is detail.
3. Predictor Design for Quality Control
As mentioned before, the accelerator provides a well defined
input-output interface and the quality-control predictor can
utilise this interface by taking in an input vector and produce
a single-bit prediction. This section discusses the design and
implementation of a table-based and a neural predictor.
3.1. Table-based Predictor
A table-based predictor stores the predictions (single-bit val-
ues) in a table indexed by a hash over the elements of the
input vector. In this section we first discuss the hash function
and then explore a multi-table predictor that aims to strike a
balance between prediction accuracy and the predictor size.
3.1.1. Variable-Size Multi-Input Prediction
This hash function should be able to (1)combine all the el-
ements in the input vector, (2)reduce destructive aliasing as
much as possible, (3)be efficiently implementable in hardware,
(4) accept a varying number of inputs. To efficiently satisfy
these requirements, we use a hardware structure called Multi-
Input Signature Register (MISR) [18] that hashes the input
elements and generates the table index. MISR takes in a bit-
vector and uses a set of XOR gates to combine the incoming
bit-vector with the content of a shift register. The result of the
XOR operation is stored in the register after a shift operation.
As the next input comes in, the MISR repeats the previous
step of combining the inputs together. After all the inputs are
processed, the value remaining in the register is the index.

This index is the result of combining all the input elements
that the core sends to the accelerator for a single invocation.
We optimistically send these inputs to both the accelerator and
the predictor assuming that in most cases the predictor will
decide to invoke the accelerator. This strategy is in line with
the earlier insight that only a small fraction of the invocations
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Figure 4: Multi-table predictor. All the tables are equally size but each
table is indexed with a different hash function. All the hash functions
are are MISRs. However, each MISR is configured differently.

will require invoking the original precise function.
3.1.2. Multi-Table Prediction
Using a single table for prediction requires large table sizes
to provide acceptable prediction accuracy. The root cause is
that only a small fraction of the input combinations need to
execute the original precise code. This phenomenon makes the
prediction harder with only one small table due to destructive
aliasing. As multiple inputs hash to the same index, in a
single table, the bias is always towards invoking the accelerator.
However, the predictor needs to distinguish the inputs that will
cause large quality loss and avoid invoking the accelerator.

We take inspiration from prior work on branch predictors
that use multiple tables [31, 32] or combine different pre-
dictors [16]. Figure 4 illustrates the general architecture of
our multi-table predictor. The predictor consists of multiple
equally-sized tables. The entries in the tables are all single-
bit values. In this predictor, the hash function for each table
is a different MISR. Figure 3 illustrates one example MISR
configuration. Using different hash functions for different
tables lowers the probability of destructive aliasing in all of
the tables. As the input elements arrive, the MISRs generate
the indices in parallel and then the prediction values are read
from the tables. The next step is combining the predictions
from different tables. Since the bias in each single table is
toward invoking the accelerator, the predictor directs the core
to run the original function even if a single table predicts to
run the original function. Therefore, the logic for combining
the result of the tables is an OR gate. Our results shows that
our multi-table predictor achieves similar accuracy levels to a
more sophisticated neural predictor.
3.2. Neural Predictor
Neural networks are powerful prediction and modelling tools.
We explore their for our prediction-based quality control task.
Prediction with neural networks have higher latency and re-

quires more computational power than the table-based predic-
tor. The neural predictor spends some of the the performance
and efficiency gains for higher quality of results. Using neu-
ral networks not only provides another design point, but also
provides a reference point to evaluate the accuracy and effec-
tiveness of our table-based predictor. There are a variety of
neural networks in the literature. For our task, we use multi-
layer perceptrons (MLPs) due to their broad applicability.
3.3. Table-based and Neural Predictor Training
As mentioned in the section 4, during compilation or runtime
we calculate the threshold that represents the final output re-
quirements at the local accelerator level. During the training
period both the accelerator and the original function are run to
obtain the accelerator error. If the accelerator error is above
the threshold the predictor is trained to run the original func-
tion ’1’ else the accelerator ’0’. However, the training is also
dependent on the predictor mechanism. We define the training
for both table-based and neural predictor.
Table-based predictor. Initially all the table entries are set
to a ’0’ implying a 100% accelerator invocation. However, if
a particular accelerator input vector gives an error above the
threshold, the table entry pointed by the hash generated by
this input set is set to ’1’. This implies that even if a single
input set pointing to a particular hash gives an undesirable
error, that hash entry in the table is set to ’1’. This avoids the
bias towards invoking the accelerator as most of the inputs
give a small accelerator error. Finally, this same methodology
is extended to train an ensemble of tables. In the case of a
table-based predictor, we compress the content of the tables
and encode it in the binary using the Base-Delta-Immediate
compression algorithm [23].
Neural Predictor. We only consider neural networks with 2,
4, 8, 16, and 32 neurons in the hidden layer even though more
layers and more neurons-per-layer are possible. We train these
five topologies with back-propagation [24] and choose the one
that provides the highest accuracy with the fewest neurons.

4. Compiler-Support for Quality Control
As mentioned before, only a certain region of code(a target
function) is offloaded to the accelerator. For each invocation
of this target function, the predictor decides whether to use the
accelerator or run the original precise function. The predictor
makes this decision based on the available local information
(input vector) with no knowledge of how those decision will
affect the application’s final output quality. That is because
applications behave in complex manners and the final output
is not yet calculated when the predictor is making its decisions.
However, before the predictor can make its decision there is a
need to train the predictor such that it can make decisions dur-
ing the actual runtime. The challenge here is to guide and train
the predictor based on the final output quality requirement.
This work provides the insight that profiling information can
effectively provide the proper guidance and training for the
predictor. Profiling provides the necessary global view of the
application and quality degradation. The key is to exploit this
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global view and enable the predictor to make local decisions.
4.1. Compilation Workflow for Predictor Training
For the profiling and training, the programmer should first
provide the application-specific quality requirement, quality
metric, and training input sets to the compiler. The remaining
predictor training constitutes two phases. In the first phase,
using all the requirements and metrics provided by the user,
the compiler runs a heuristic algorithm that leverages profiling
to determine which input combinations to the target function
can be executed on the accelerator while statistically satis-
fying a given quality requirement (Section 4.2). Using this
information, the compiler trains the predictor (Section 4.3).
As the profiling and training are a part of the offline compila-
tion, the trained predictor configuration is incorporated in the
accelerator configuration.
4.2. Finding Threshold
The degree of acceptable quality loss is provided as a com-
piler option. Quality is an application-specific metric. As is
commensurate with other works on approximation, the pro-
grammer needs to provide a function that measures the final
quality degradation. To perform profiling, the programmer
also provides a set of representative input sets similar to those
in the application test suite. Given this information, we use
thresholding to identify the function inputs for which invoking
the approximate accelerator will eventually lead to quality loss
greater than the requirement.

In this technique, the premise is that the accelerator error
should not exceed a given threshold. That is, if the accelerator
will lead to a larger error than the threshold on a certain input,
it should not be invoked on that input and the original function
should be executed. Equation 1 defines this premise and shows
that the error on all the output elements should be below the
threshold to allow invoking the accelerator.

∀oi ∈ Out putVector |oi(precise)−oi(approximate)| ≤ th (1)

For a given output quality, the threshold is the upper bound on
the error that can be tolerated from the accelerator. In other
words, the threshold is the maximum local error that the target
function can impose on the execution. With this definition,
the compiler’s task is to find the threshold such that the final
quality requirement is statistically satisfied. To find the thresh-
old, we develop an algorithm that iteratively searches for the
optimal threshold that conservatively maximizes the number
of accelerator invocations subject to the quality requirements.
That is, the algorithm aims to maximize the acceleration bene-
fits. As Section 5 elaborates, we use a different set of inputs
to validate the selection of the threshold.
4.3. Training Predictor
Once the threshold is determined, in the second phase the pre-
dictor can be trained. Training the predictor requires running
the application and randomly sampling the accelerator error.
For the sampled invocations, if the accelerator error on all the
output elements is less than the threshold, the predictor will
be trained to invoke the accelerator. Otherwise, the predictor
will be trained to trigger the execution of the original function.

Table 1: Benchmarks, their quality metric, input data sets, and the
initial quality loss when the accelerator is invoked all the time.

Benchmark Application 
Error Metric Input Data NPU Topology Error

blackscholes Avg. Relative Error 4096 Data Point from 
PARSEC Suite 6->8->8->1 6.03%

fft Avg. Relative Error 2048 Random Floating 
Point Numbers 1->4->4->2 5.48%

inversek2j Avg. Relative Error 10000 (x, y) Random 
Coordinates 2->8->2 7.29%

jmeint Miss Rate 10000 Random Pairs of 
3D Triangle Coordinates 18->32->8->2 17.69%

jpeg Image Diff 220x200-Pixel Color 
Image 64->16->64 6.91%

sobel Image Diff 220x200-Pixel Color 
Image 9->8->1 9.96%

Whether or not to invoke the accelerator is a local decision
that is merely based on the accelerator error. Hence, this
decision is a function of the accelerator configuration, its
inputs, and the threshold. The accelerator configuration does
not change for an application and the the threshold is constant
for compilation targeting a quality requirement. Therefore,
training of the predictor is only dependent on the inputs that
are sent to the accelerator. Given this insight, we pre-train the
predictor through profiling. Profiling is used to generate the
training input vectors for the predictors from the application
training datasets. Each accelerator input vector is mapped to a
single bit decision depending on the results of the equation 1
for that particular input vector. As the results in Section 5
show, this training methodology provides statistical quality
guarantees with high confidence. Finally, we add a special
branch instruction to the ISA that invokes the original code
instead of the accelerator if the predictor predicts large error
for that particular invocation.

5. Evaluation
Cycle-accurate simulation. We use the MARSSx86 x86-64
cycle-accurate simulator [22] to measure the performance
of the accelerated system, which is augmented with our
prediction-based quality control mechanisms. The proces-
sor is modeled after a single-core Intel Nehalem to evaluate
the performance benefits over an aggressive out-of-order ar-
chitecture1. The NPU consists of eight processing elements
and exposes three queues to the processor to communicate the
inputs, the outputs, and the configurations. We use GCC v4.7.3
with -o3 to enable compiler optimization. The baseline in our
experiments is the benchmark run solely on the processor with
no approximate acceleration. We also augmented MARSSx86
with a cycle-accurate simulator for NPU that also models the
overheads of the prediction-based quality control.
Energy modeling. We use McPAT [17] for processor energy
estimations. We model the energy of the NPU using results
from McPAT, CACTI 6.5 [21], and [13]. The cycle-accurate
NPU simulator provides detailed statistics that are used to
estimate its energy and the neural predictor. For estimating the

1Processor: Fetch/Issue Width: 4/6, INT ALUs/FPUs: 3/2, Load/Store FUs:
2/2, ROB Size: 128, Issue Queue Size: 36, INT/FP Physical Registers:
256/256, Branch Predictor: Tournament 48KB, BTB Sets/Ways: 1024/4,
RAS Entries: 64, Load/Store Queue Entries: 48/48, Dependence Predictor:
4096-entry Bloom Filter, ITLB/DTLB Entries: 128/256 L1: 32KB Instruc-
tion, 32KB Data, Line Width: 64bytes, 8-Way, Latency: 3 cycles L2: 2MB,
Line Width: 64bytes, 8-Way, Latency: 12 cycles Memory Latency: 50 ns
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energy of the table-based predictor, we implement the MISRs
in Verilog and synthesize them. We use CACTI 6.5 to measure
the energy cost of accessing the tables. The processor, the
predictors, and the accelerator operate at 2080 MHz at 0.9 V
and are modeled at 45 nm technology node.
Benchmarks. Table 1 summarizes the information about
each benchmark: application domain, input data, NPU topol-
ogy, and final application error levels when the accelerator is
invoked all the time without quality control. Each benchmark
requires an application-specific error metric, which is used
in our compilation and evaluations. The initial error with no
quality control and full approximation ranges from 5.48% to
17.69%. This relatively low initial error makes the quality-
control more challenging and the diversity of the application
error provides an appropriate ground for understanding the
tradeoffs in prediction-based quality control.
Input datasets. We use 40 distinct input datasets for the
experiments. We use 20 datasets during compilation to find
the threshold and train the predictor. We use 20 different
unseen datasets for validation and final evaluations that are
reported in this section. The datasets are typical program
inputs, such as images, or random values (see Table 1).

5.1. Experimental Results
Prediction accuracy. We use an oracle predictor as an ide-
alized point of reference to measure the accuracy of our pre-
dictors. The oracle predictor provides maximum benefits from
approximate acceleration while satisfying the error require-
ments as it uses the threshold to demarcate the inputs that run
on the accelerator and the ones that run on the core. Figure 5a,
Figure 5b, and Figure 5c compare the prediction accuracy of
the table-based and neural predictor when the error require-
ments are 7.5%, 5.0%, and 2.5%. In these experiments, for the
table-based predictor we use the Pareto-optimal configuration
comprising of eight tables, each of size 0.5KB. The neural pre-
dictor requires a different topology for each application. These
topologies are reported in Table 1. The table-based predictor
provides an average of 75% of prediction accuracy for the 5.0%
error requirement; only 9% short of the neural predictor which
is a sophisticated compute-heavy predictor.

Another factor useful in the evaluation of the prediction-
based quality control is the accelerator invocation rate. The
invocation rate is the ratio of the number of the accelerator
invocations to the total number of times the target function is
executed. Figure 6 shows the invocation rate of the table-based,
neural, and oracle predictor with the three error requirements.
Note that the accelerator invocations determined by the pre-
dictors satisfy the specified error requirements. As the error
requirements are tightened (from 7.5% down to 2.5%), we see
a general decrease in both the prediction accuracy and the
invocation rate. To meet the stricter requirements, the predic-
tor conservatively runs the original function more frequently.
The average prediction accuracy decreases from 87% to 69%
for the table-based predictor and 90% to 72% for the neural
predictor as the error requirements tightens from 7.5% to 2.5%.
The average invocation rate drops from 88% to 42% for the
table-based predictor and 90% to 57% for the neural predictor.

Except for two of the benchmarks, jmeint and sobel, the
other benchmarks satisfy the 7.5% error requirement even with
100% accelerator invocation rate. In these cases, the predictor

simply predicts ’0’. We report the accuracy of the predictor
in these cases as 100% and do not engage the predictor at
all. The jmeint benchmark is an outline and has the highest
initial error rate of 17.69% with 100% invocation rate. This
characteristic is due to the complex control flow behavior in
this benchmark. As the requirements become stringent, the
predictor needs to mostly execute the original precise function.
For jmeint with an error requirement of 2.5%, the table-based
predictor executes the original function 90% of the time to
satisfy the error requirements. Benchmark fft on the other
hand, provides a very high prediction accuracy of 99% for all
error requirements. This high prediction accuracy is due to the
fact that the accelerator inputs that produce large errors on the
accelerator have similar properties. These accelerator inputs
benefit from the constructive aliasing that the MISR-based
hash function provides. The neural predictor outperforms
the table-based prediction with relatively small margins.
However, neural networks are sophisticated prediction
algorithms that require both energy and compute resources.
The neural predictor also provide a realistic reference point to
asses the efficacy of the much simpler table-based predictor.

As the results show, the table-based predictor provides compa-
rable accuracy to the more sophisticated neural predictor. These
results suggest that our table-based algorithm can be efficiently
used for quality-control in approximate acceleration.

Performance and energy benefits. The prediction-based
quality control aims to retain the maximum possible perfor-
mance and energy efficiency benefits while statistically satis-
fying the desired error requirements. Figure 7 and Figure 8
respectively show the speedup and the energy benefits for the
specified error requirements. Comparing Figure 6, Figure 7,
and Figure 8, clearly shows that the performance and energy
efficiency benefits have a direct correlation with the invoca-
tion rate. As discussed when the invocation rate is 100%, the
predictor is turned off and does not impose any overheads.
In Figure 7, and Figure 8, the FullApprox bar represents the
acceleration with no quality control. Figure 7a shows the
application speedup when the accelerator is executed for the
approximated region while satisfying the 7.5% error require-
ment. In this case, the predictor is only engaged for jmeint
and sobel. Therefore, the average speedup of 4× and 5.5× are
observed for the table-based and neural predictors respectively.
However, as shown in Figure 7b and Figure 7c, the speedup
reduces to 3× for 5.0% and 2× for 2.5% error requirement.
The reduced invocation rate for stricter error requirements
accounts for this decrease in the benefits obtained from ap-
proximate accelerator. Even though the table-based predictor
has a lower invocation rate than the neural predictor due to
the lower prediction accuracy, the speedup obtained from the
predictors are similar since the neural predictor incurs a higher
cost owing to its sophisticated technique and hence negating
some of the benefits obtained from approximate acceleration.
The energy reduction results show similar trends. The average
energy reduction is 5× for 7.5% and drops to 2× for 2.5% error
requirement. Compared to the speedup, the energy benefits
decrease with a higher rate as the error requirements become
tighter since the energy reduction ratio per an accelerator in-
vocation is greater than the speedup. In our experiments, the
neural predictors benefits from the existing NPU infrastructure
and hence when a neural accelerator is unavailable, neural
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Figure 5: Prediction accuracy in comparison to the oracle predictor.

0%

20%

40%

60%

80%

100%

In
vo

ca
tio

n 
Ra

te

blackscholes fft inversek2j jmeint jpeg sobel geomean

1.0 1.0 1.0 1.01.0 1.0 1.0 1.01.0 1.0 1.0 1.0

Table-based
Neural
Oracle

(a) 7.5% error requirement

0%

20%

40%

60%

80%

100%

In
vo

ca
tio

n 
Ra

te

blackscholes fft inversek2j jmeint jpeg sobel geomean

1.0 1.0

Table-based
Neural
Oracle

(b) 5.0% error requirement

0%

20%

40%

60%

80%

100%

In
vo

ca
tio

n 
Ra

te

blackscholes fft inversek2j jmeint jpeg sobel geomean

Table-based
Neural
Oracle

(c) 2.5% error requirement
Figure 6: Accelerator invocation rate for the table-based, neural and oracle predictor.
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Figure 7: Application speedup with the acceleration determined by the predictors.
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Figure 8: Application energy reduction with acceleration determined by the predictors.

!
7.5% 5.0% 2.5% 7.5% 5.0% 2.5%

blackscholes 0.952 ± 0.038 0.91 ± 0.075 0.933 ± 0.061 0.952 ± 0.038 0.952 ± 0.038 0.952 ± 0.038
fft 0.91 ± 0.075 0.933 ± 0.061 0.952 ± 0.038 0.91 ± 0.075 0.952 ± 0.038 0.952 ± 0.038
inversek2j 0.952 ± 0.038 0.933 ± 0.061 0.952 ± 0.038 0.952 ± 0.038 0.933 ± 0.061 0.952 ± 0.038
jmeint 0.91 ± 0.075 0.91 ± 0.075 0.91 ± 0.075 0.841 ± 0.103 0.841 ± 0.103 0.864 ± 0.095
jpeg 0.818 ± 0.11 0.887 ± 0.086 0.91 ± 0.075 0.818 ± 0.11 0.818 ± 0.11 0.91 ± 0.075
sobel 0.841  0.103 0.887 ± 0.086 0.952 ± 0.038 0.91 ± 0.075 0.887 ± 0.086 0.952 ± 0.038

Table Predictor Neural Predictor

Table 2: Table-based and neural predictor’s 95% confidence interval.

predictors are not that effective. However, our table-based
predictor achieves similar benefits with no dependencies to
the acceleration technique.

Although the neural predictor has a slightly higher prediction
accuracy and invocation rate than the table-based predictor, both
predictor yield similar benefits in terms of speedup and energy
efficiency due to the high cost of the neural predictor.

Statistical Quality Guarantees The predictors provide sta-
tistical guarantees that the quality requirement will be satisfied.
That is, with high probability, the error requirements will be
met on unseen data that is drawn from the same distribution of
the inputs that are used for selecting the threshold and training

the predictors. To provide confidence in our statistical guar-
antees, we randomly divide the program input set into two
subsets, training and validation. Each subset in our experi-
ments have 20 distinct input sets. We use one subset to train
the predictors and the other to validate the predictors’ accuracy.
Previous works on approximate computing [33, 19, 26, 25, 30]
that deal with quality control also provide statistical guaran-
tees. In general, providing formal guarantees that the quality
requirements will be met on all possible inputs is still an
open research problem. Due to the complex behavior of pro-
grams and the large space of possible inputs, the statistical
approaches to validate quality control techniques are the com-
mon practice in approximate computing [33, 19, 26, 25, 30].
Section 6 discusses these related works in more detail.

To assess the confidence in the statistical guarantees, we
measure the 95% central confidence intervals using the 20
unseen validation datasets. We adopt the same methodology
that is used in [26, 25] for measuring Baysian confidence
intervals. To avoid bias when measuring the confidence
intervals, we assume that the prior distribution is uniform.
Consequently, the posterior will be a Beta distribution,
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BETA(k+ 1,n+ 1− k), where n is the number of program
input datasets (number of observed samples) and k is the
number of datasets on which the approximated program
satisfies the quality requirement [34]. Table 2 depicts the
confidence intervals for all the three error requirements,
which are 7.5%, 5%, and 2.5%. An interval (p1, p2) in the
figure shows that with probability between p1 and p2, the
prediction-based quality control will satisfy the requirement
on unseen data. The confidence in these probabilities is 95%.

In most cases, the quality requirement is satisfied on all the vali-
dation data sets. In these cases, the probability interval is (0.91,
0.99). In the case of jmeint and jpeg that the quality requirements
are not satisfied with few of the data sets, in the worst case the
probability interval is (0.72, 0.90). Even in these cases the proba-
bility of satisfying the error requirements is significantly high that
confirms the effective ness of our prediction-based quality control.

6. Related Work
Several studies have shown that diverse classes of applications
are tolerant to imprecise execution [7, 27, 12]. A growing body
of work has explored leveraging approximation at the the cir-
cuit and architecture level for gains in performance, energy,
and resource utilization [8, 11, 26, 1, 12, 36, 28, 2, 26, 3, 14,
20]. Our work; however, lies at the intersection of (1) quality
control techniques for approximate computing and (2) microar-
chitectural techniques for prediction and speculation. Several
techniques provide software-only quality control mechanisms
for approximate computing that either operate at compile-
time [33, 19, 6, 29, 5, 30] or runtime [3, 26, 25, 15, 14].
In contrast, we define a prediction-based microarchitectural
mechanism for quality control at runtime that exposes a knob
to the compiler. We also develop the necessary compiler sup-
port for the proposed hardware mechanism.
7. Conclusion
Approximate accelerators are an emerging type of accelerators
that trade output quality for significant gains in performance
and energy efficiency. However, the lack of microarchitectural
mechanisms that control this tradeoff limit their applicability.
In this paper, we described a prediction-based microarchitec-
tural mechanism for quality control in these accelerators. The
work in this paper provides microarchitectural mechanisms to
assist quality control, an imperative feature for approximate
acceleration to become viable.
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