
AXGAMES: Towards Crowdsourcing Quality
Target Determination in Approximate Computing

Jongse Park Emmanuel Amaro Divya Mahajan Bradley Thwaites Hadi Esmaeilzadeh
Alternative Computing Technologies (ACT) Lab

Georgia Institute of Technology
{jspark, amaro, divya mahajan, bthwaites}@gatech.edu hadi@cc.gatech.edu

Abstract
Approximate computing trades quality of application output

for higher efficiency and performance. Approximation is useful
only if its impact on application output quality is acceptable to
the users. However, there is a lack of systematic solutions and
studies that explore users’ perspective on the effects of approx-
imation. In this paper, we seek to provide one such solution for
the developers to probe and discover the boundary of quality loss
that most users will deem acceptable. We propose AxGames,
a crowdsourced solution that enables developers to readily infer
a statistical common ground from the general public through
three entertaining games. The users engage in these games by
betting on their opinion about the quality loss of the final out-
put while the AxGames framework collects statistics about
their perceptions. The framework then statistically analyzes the
results to determine the acceptable levels of quality for a pair
of (application, approximation technique). The three games are
designed such that they effectively capture quality requirements
with various tradeoffs and contexts.

To evaluate AxGames, we examine seven diverse applica-
tions that produce user perceptible outputs and cover a wide
range of domains, including image processing, optical character
recognition, speech to text conversion, and audio processing.
We recruit 700 participants/users through Amazon’s Mechanical
Turk to play the games that collect statistics about their percep-
tion on different levels of quality. Subsequently, the AxGames

framework uses the Clopper-Pearson exact method, which com-
putes a binomial proportion confidence interval, to analyze the
collected statistics for each level of quality. Using this analy-
sis, AxGames can statistically project the quality level that
satisfies a given percentage of users. The developers can use
these statistical projections to tune the level of approximation
based on the user experience. We find that the level of acceptable
quality loss significantly varies across applications. For instance,
to satisfy 90% of users, the level of acceptable quality loss is
2% for one application (image processing) and 26% for another
(audio processing). Moreover, the pattern with which the crowd
responds to approximation takes significantly different shape
and form depending on the class of applications. These results
confirm the necessity of solutions that systematically explore the
effect of approximation on the end user experience.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212) 869-0481. Copyright 2016
held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS ’16, April 02 - 06, 2016, Atlanta, GA, USA
Copyright c� 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2872362.2872376

Im
pr

ov
em

en
t i

n
En

er
gy

 ⨉
 D

el
ay

Output Quality

Im
pr

ov
em

en
t i

n
En

er
gy

 ⨉
 D

el
ay

% Users Satisfied

AXGAMES

Figure 1: AXGAMES is a crowdsourcing solution that transforms
the tradeoff between quality and energy-performance gains from
approximation to the tradeoff between the gains and user satisfaction.

1. Introduction
Power efficiency is a primary concern in modern systems.

Battery capacity often limits mobile devices, while power con-
sumption and cooling imposes budgetary constraints on data
centers. Moreover, traditional CMOS scaling has slowed to a
point that threatens the longstanding cadence of continuously
improving performance [1–3]. Meanwhile, emerging workloads
must manage ever-growing datasets with high responsiveness
and availability to end users. Expert analyses show that in 2011,
1.8 zettabytes (1.8 trillion gigabytes) of information was cre-
ated and replicated by all sources, with individual consumers
responsible for 75% [4]. By 2020, the world’s data centers will
be responsible for managing 50⇥ this staggering figure [4]. This
level of demand for computing raises serious concerns about the
capabilities of current computing systems to match emerging
trends. Apropos these confluent challenges, a growing body
of recent work seeks to exploit a common property of many
emerging applications: tolerance to approximate computation.
These techniques relax the traditional abstraction of full accuracy
in data processing, storage, and retrieval, thus trading losses in
output quality for improved performance and efficiency [5–16].

While these techniques provide promising gains, the effects
of quality loss on the users are not well understood, leaving ap-
proximation techniques in a position of questionable utility. The
challenge is determining the level of quality loss that the large
majority of users deem acceptable. Discovering this level requires
end users, who are not readily available during the development
phase. Even after the application is deployed, frameworks that
enable users to provide feedback on the quality loss are currently
unavailable. To this end, we aim to develop a framework that
methodically utilizes crowdsourcing to identify the desirable
application output quality without exposing the details of approx-
imation to the users. The objective is to aid the developers in
identifying the acceptable level of quality loss and enable the
crowd of users to directly help in determining this level. The
crowdsourcing process needs to also be engaging and enjoyable
enough to retain users. To address these challenges, this paper
describes AxGames, a game-based crowdsourcing framework
that statistically projects user-driven quality targets for approx-

Architectural Support for Programming Languages and Operating Systems, 2016
Appears in the Proceedings of the 21st ACM International Conference on

Approximate
Program and Knob

Preprocessing
Engine

Approximated
Output DB

Crowd Response
Analyzer

Crowd

Games Statistics Collection
Engine

Input Datasets

Games
POLLICE VERSO

WINABATT
QNA

Figure 2: An overview of the AXGAMES crowdsourcing solution which determines the user-driven quality target for a given approximated application.

imate computing. As Figure 1 illustrates, AxGames changes
the tradeoff between output quality and energy-performance
gains to a tradeoff between the gains and the percentage of the
users who are satisfied with the output.

AxGames comprises three web-based games that enable
players to collectively identify the acceptable level of quality for
the application in question. The games are designed to find a
statistical consensus among the players on which level of quality
loss is acceptable. Finding the statistical consensus is imperative
in ensuring that the majority of the application users will accept
the quality loss caused by the approximation technique. The
first game allows the users to express their perception about
the quality of the approximated output without regard to the
quality-cost tradeoff. The second game enables users to choose a
level of quality while considering an abstract cost tradeoff. The
third game adds an element of context by asking the players
to answer a multiple-choice question about the approximated
output. The users are given an incentive to select the lowest
output quality that allows them to answer the question. All
the three games involve betting, spending, losing, and winning
virtual money. The virtual money is an abstract metaphor for
compute resources (time, energy, storage) that need to be spent to
achieve a higher quality output. The rewarding procedure in the
games is designed to place players in competition with previous
players. This strategy uses the overall group to act as a check
mechanism for the feedback that is provided by the players.
While the participants/users play, the games collect statistics
about their choices.

We use the Clopper-Pearson exact method [17] to statistically
project the acceptable level of accuracy based on the statistics
collected by the games. These projections provide a statistical
basis for the developers to decide which degree of approximation
will provide a satisfactory experience for the users. Our analysis
is impartial to the benefits of approximation and independent of
the approximation technique that is utilized.

To evaluate our solution, we study seven applications that pro-
duce user perceptible outputs and cover a wide range of domains
including image processing, optical character recognition, speech
recognition, and audio processing. Humans are naturally tolerant
to approximation; hence, many approximation techniques target
these domains of applications. We recruit 700 participants/users
through Amazon’s Mechanical Turk to play the games. The
study shows that level of acceptable quality changes significantly
across applications. For instance, to satisfy 90% of users, the
level of acceptable quality loss is 2% for one application and 26%
for another. Moreover, the study shows that generally users have
higher tolerance to approximation when exposed to the tradeoff

between cost and quality. The users’ tolerance is even higher
when they consider a context. Moreover, the pattern with which
the crowd responds to approximation takes significantly different
shape and form depending on the class of applications. These
results suggest the necessity of solutions that systematically
explore the effect of approximation on the end user experience.

By introducing the AxGames framework, this paper makes
the following contributions:
1. Crowdsourcing for approximate computing: We develop

a game-based crowdsourcing solution as an effective step to-
wards enabling developers to systematically assess the effect
of approximation from the user’s perspective.

2. Statistical inference: We couple the crowdsourcing with sta-
tistical analysis to quantitatively translate raw data from the
games to actionable results.

3. Deployment: Through deployment on Amazon’s Mechanical
Turk, we investigate the effectiveness of the proposed solution
and show the necessity of the end user feedback by examining
a diverse of real applications from different domains.
This study open a new axis, that of user experience, for the

growing research in approximate computing. This work also
sheds light on previously unexplored effects of approximation
on the users. Moreover, it provides a development tool–rather
unconventional–for the research community to better assess their
innovative approximation techniques. Our tool is open source
and is publicly available at http://act-lab.org/artifacts/axgames.

2. Overview
Figure 2 provides an illustration of AxGames’s overall

structure. AxGames is comprised of four major components:
(1) approximated output database, (2) the three games namely
Pollice verso

1, WinABatt, and QnA; (3) the data col-
lection engine; and (4) the crowd response analyzer. This section
provides an overview of these components.
Approximated output database. The first step in using the
AxGames solution is generating outputs of a given approxi-
mated application with varying degrees of quality loss. Note that
AxGames is independent of the approximation technique and
does not depend on how approximation is applied in the program.
The developer provides a program which: (1) has an approxima-
tion knob to vary the degree of quality loss, and (2) can measure
the quality loss for an approximated output2. For each input in the

1Wikipedia: “Pollice verso refers to the hand gesture or thumbs signal used by
Ancient Roman crowds to pass judgment on a defeated gladiator.”

2When developing an approximated program the developer needs to provide both
the approximation knob and the quality measurement procedure [8, 10, 12, 13].
Therefore, in this regard, using AxGames does not require extra effort.

http://act-lab.org/artifacts/axgames

input dataset, the application is executed with different degrees of
quality losses. A database records the approximated outputs, their
degree of quality loss, and the setting of the approximation knob.
We refer to this database as the approximated output database.

AxGames is designed to study a wide range of applications
that generate outputs perceivable by humans through output de-
vices such as a monitor or a speaker. Therefore, AxGames cur-
rently provides a large collection of images, audio, and text. This
collection can be used by a wide variety of applications that span
different domains to generate their own specific approximated
output database. By playing the games, players collectively build
a judgment regarding the acceptable quality for the collection of
outputs. Additional information may be stored in the approxi-
mated output database. For instance, in the QnA game, players
will need to answer one simple question for each approximated
output. These questions are stored in the database as well. Sec-
tion 3 discusses these questions and describes the three games in
detail. Populating the approximated output database is performed
offline to avoid unnecessary involvement of developers with the
internals of gaming and crowdsourcing.
The three games. AxGames used the approximated output
database as an input to its three different games. In all the
games, a player is given an initial allowance of virtual money.
The player’s objective is to earn more money by guessing the
statistical common ground among the previous players. In a
sense, each player is playing with all of the past players and
her guess affects the majority vote for the future players. As
the crowd of gamers play the games, the players are iteratively
converging to a statistical common ground. AxGames can then
statistically infer the acceptable level of quality from the gamers’
choices. Section 3 presents the details of the three games.
Statistics collection engine. As the users play, the games
record the player choices and the game state in a database
along with the player user IDs. AxGames uses this data to
perform statistical projections about the percentage of users that
deem a certain level of quality acceptable.
User response analyzer. After collecting the statistics from
all the players, AxGames uses the Clopper-Pearson exact
method [17] to calculate the binomial proportion confidence inter-
val [18] for each level of quality loss. These intervals represent the
percentage of users that deem a certain level of quality acceptable.
Section 4 elaborates on the calculation and use of these intervals
to recommend quality targets for the approximated applications.

3. The Three Games
AxGames includes three web-based games which aim to

enable the crowd to iteratively converge to a statistical common
ground. The players register with a unique user ID on the website
to play the games without revealing personal information. Each
user plays all three games independently and each game is played
for 10 rounds. From the player’s perspective, all three games
revolve around betting, earning, spending, and losing virtual
money. The score is the player’s balance at the end of the game.
We intentionally avoided exposing the direct relationship between
virtual money and the computation cost to avoid biasing the
gamers in choosing any level of quality. This relationship is a
parameter in the games and can be exposed if desired. We also

intended to make the games entertaining and enjoyable by using
virtual money as the score and as a proxy for compute resources
in two of the games. Our surveys show that 84% of the users
were entertained when playing the games.

We devised the three games with different intuitions about
inferring user-driven acceptable level of quality through crowd-
sourcing. The first game, Pollice verso, is a betting game.
In each round, the player is presented with an approximated
output and its corresponding precise version. The player is asked
to guess whether or not the majority of other players thought
that the approximated output is good enough. The player bets
money on her guess and wins money back if the guess is correct3.
This game aims to find a statistical common ground about the
acceptability of an approximated output. However, Pollice
verso does not have any notion of tradeoff between quality and
cost. To include the notion of cost, we designed WinABatt

which presents the player with a very low quality output and asks
the player “How much would your spend to receive a better
output?”. The player can spend money to improve the output
quality with a slider. The player wins money back depending on
how close her choice of quality is to the previous players’ selec-
tion. The objective of these two games is to find the statistical
common ground while players judge the quality of the output
in an abstract and context-insensitive manner. To provide some
general context to the players, the third game QnA, presents
the player with a very low quality output and asks the player a
multiple choice question about that specific output. To answer
the multiple-choice question, the player can improve the quality
of the output by spending money with a slider. The player wins
money back based on both the correctness of her answer and
the closeness of her choice of quality to the previous players’
selection. QnA gives incentive to the players to strike a balance
between quality and cost while considering some context. The
rest of this section describes these three games in further detail.
3.1 POLLICE VERSO

As Figure 3 illustrates, Pollice verso is a betting game
that gives each player an initial allowance of $500 virtual money.
By keeping track of players’ bets, the game aims to infer the
statistical common ground for the acceptable level of quality for
a given application. The game randomly selects an approximated
output o, and displays o along with its precise counterpart o⇤.
Internally, we represent each approximated output o with the
following tuple: (o,q,s,n,n

GoodEnough

) (1)

In Equation (1), q is the output quality; s is the setting of the
approximation knob that led to this quality; n is the total num-
ber of past players that have played this particular output; and
n

GoodEnough

is the number of players who thought the output
is good enough. The last two parameters capture the history of
the previous players’ choices.

After displaying the outputs, a player is asked “How much
do you want to bet that this approximation is Good

3
Pollice verso shares similarities with A/B testing [19]. However, A/B test-
ing does not incorporate (1) games and betting (provided by all three games) (1)
a sense of tradeoff (provided by WinABatt) and (2) a sense of context (pro-
vided by QnA) to the users. As the statistical results show, userss tolerance to
approximation increases when the tradeoff and/or context is added to the games.

Figure 3: A round of the POLLICE VERSO game when deployed for an
approximated implementation of the jpeg application.

Enough/Unacceptable?” Using the gaming chips shown in
Figure 3, the player chooses to bet b amount of money on her
answer. The player’s choice c, is a binary decision.
Rewarding procedure. The player may win money or lose the
bet depending on whether the past players agree with her choice.
This rewarding strategy incentivizes the players to gradually
come to a statistical common ground without directly interacting
with each other. As Equation (2) shows, the winnings w, is a
function of the player’s choice c, the amount of bet b, and the
past player’s choices, captured by n and n

GoodEnough

. Note that
the values of n and n

GoodEnough

are updated after the player
receives her reward. Therefore, the player’s choice affects the
winnings of future players.

w(c,b,n,n
GoodEnough

)=b·(reward(c,n,n
GoodEnough

)�1) (2)
where

reward(c,n,n
GoodEnough

)=
(
2·f(c,n,n

GoodEnough

) if 0f0.5

�7.8·f(c,n,n
GoodEnough

)+8.9 if 0.5<f1

(3)

As Equation (2) shows, the player wins money proportional
to the amount of bet b. The reward function (Equation (3) and
Equation (4)) defines this proportion based on whether or not
the majority of previous players agree with the player’s choice
c. In Equation (3), the constants (2, �7.8, 8.9) are picked such
that the player loses all her bet in the worst case or quadruples
her bet in the best case. Moreover, if the output is controversial,
the loss is low and the gain is high. An output is controversial
if n

GoodEnough

/n⇡0.5. That is, almost half of the past players
think the output is good enough and the other half thinks other-
wise. In Equation (3), f captures the level of agreement between
the player’s choice with the majority vote of the previous players
as presented in Equation (4).

f(c,n,n
GoodEnough

)=agreement(c,n,n
GoodEnough

)=
(
n

GoodEnough

/n if c=Good Enough

1�n

GoodEnough

/n if c=Unacceptable

(4)

To enable players to make choices primarily based on their
own perception, the reward function is hidden. Additionally, they
play the game with no knowledge of the majority vote.

output?

Figure 4: A round of the WINABATT game when deployed for an
approximated implementation of the sobel application.

3.2 WINABATT
Pollice verso enables users to perceptively judge the

quality of an approximated output without regard to the tradeoff
between quality and cost. To add this notion of tradeoff, we
designed WinABatt as shown in Figure 4. The player starts
with $100 of initial allowance and in each round, the game
displays an approximated output at its lowest quality and asks
the player: “How much would you spend to receive a better
output?” The player is also given a slider with which she can
adjust the output quality. The slider controls the quality and the
cost associated with each quality level. Selecting a higher quality
translates to spending more virtual money. Unlike Pollice

verso, the player’s choices in WinABatt are no longer
yay/nay binary decisions, and the player uses a continuous slider
to choose a level of quality while considering its cost. If the game
was naively designed, the player would always choose the lowest
level of quality since it costs the least. However, in WinABatt,
the player will be rewarded or penalized depending on how her
choice of quality is close to the previous players. Hence, the
player is also trying to guess the statistical common ground
among the past players in a cost-conscious manner.
Rewarding procedure. To calculate the player’s winnings and
the statistical common ground, the game internally represents
each output with the following tuple:

(O,Q
c

,q

MA

,n) (5)

In Equation (5), O is the set of different approximated versions
of an output; Q

c

is the set of previous players’ choice of quality,
q

MA

is the cumulative moving average of the past players’ choice
of quality; and n is the number of previous players that played
the O set. The q

MA

captures the statistical common ground
among the past n players and is updated based on Equation (6)
after the current player is rewarded.

q

(n+1)
MA

=
q

(n)
MA

·n+q

c

n+1
(6)

As shown in Equation (7), the player’s winnings w, is a
function of her choice of quality q

c

and q

MA

. As shown, the
player’s reward is deducted by her bet money b, which is the
cost associated with her choice of quality q

c

. This cost function

output

Figure 5: A round of the QNA game when deployed for an
approximated implementation of the emboss application.

is linear to avoid bias towards any specific quality with $5 for
the lowest quality version (q

min

) and $30 for the highest qual-
ity version (q

max

). The conditional part of Equation (7) is the
reward that is determined by f(q

c

,q

MA

), which is presented in
Equation (8) and captures how the player’s choice of quality, q

c

,
is close to the choice of previous players’ moving average, q

MA

.
The constants in Equation (7) is chosen such that the player’s
winnings, w, is between �$35 and +$35.

w(q
c

,q

MA

)=�b+

(
5·f(q

c

,q

MA

)�10 if f10

40=5·10�10 if f >10
(7)

f(q
c

,q

MA

)=agreement(q
c

,q

MA

)=

✓
|q

c

�q

MA

|
q

max

�q

min

◆�1

(8)

This rewarding procedure incentivizes the players to balance
the cost and quality while guessing the past player’s consensus.
3.3 QNA

While WinABatt provides an opportunity to the players
to explore the tradeoff between quality and cost, they do so in
an abstract and context-insensitive manner. To provide some
context to the players, we design the QnA game. As Figure 5
illustrates, in each round, QnA displays an approximated output
initially set to its lowest quality level, along with a slider, and
a multiple-choice question about the output. The questions are
in the form of ”What can you find in this image? Sports car
/ SUV / Truck / Heavy equipment.” The player needs to
answer the question and can spend money to improve the quality
using the slider. Similar to WinABatt, the initial allowance
provided is $100. In contrast to WinABatt, the slider cannot
move backwards. This feature is to prevent the players from
cheating, increasing the quality to answer the question, and then
decrease the quality to minimize the cost. In other words, once
the player improves the quality, she cannot recover the cost of
seeing the higher quality output.
Rewarding procedure. The winnings are calculated based on
the rewarding procedure explained for WinABatt with the
exception that the player also pays a $20 penalty for answering
the question incorrectly. There is no extra reward for correct

answers. The player wins money back depending on the correct-
ness of her answer and the closeness of her choice of quality to
the moving average of the previous players. QnA incentives
the players to find a statistical common ground while balancing
quality and cost with respect to some context about the output.

4. Statistical Analysis
As mentioned before, the games internally collect the player’s

choices and decisions for a series of outputs at different levels of
quality. To enable the application developer to draw meaningful
conclusions from this raw data, we devise a statistical framework
that projects the user-driven quality target. Due to the large space
of possible inputs and the diversity of users, it is practically
infeasible to find a quality target that satisfies the entire popula-
tion of the users for any arbitrary input. However, coupling the
games with statistical analysis provides a pragmatic approach to
determine the quality target that, with high confidence, satisfies
the large majority of users.
4.1 Binomial Proportion Confidence Interval

We calculate the binomial proportion confidence interval [18]
for each level of quality loss. Given the decisions of a sam-
ple population (players of the games), the binomial proportion
confidence interval projects what percentage of the statistical
population (all the users) are likely to deem a certain level of qual-
ity good enough (acceptable). After the players play the games,
AxGames calculate this confidence interval for a range of
quality losses which resulted from approximating the application-
under-study. Based on the confidence interval, we can determine
the level of quality loss that is highly likely to satisfy, for example,
90% of the statistical population4 of the users.

AxGames leverages a commonly used method, the Clopper-
Pearson exact method [17] to compute the binomial proportion
confidence interval. We chose the Clopper-Pearson method as
it has certain advantages over the other available options [20,
21] such as, (1) higher accuracy as the number of samples
becomes relatively large, and (2) it can calculate the confidence
interval even when the opinion of the sample population is very
skewed towards a decision. These features are important in
our setup since the games provide a relatively large number
of statistical samples, and the large majority of the players are
highly likely to think that 1% quality loss is almost always
acceptable and similarly a 50% quality loss is almost never
good enough. Moreover, the Clopper-Pearson exact method
calculates a conservative confidence interval that reduces the
risk of being too aggressive when it comes to approximation.
The binomial confidence interval is calculated based on a set
of binary decisions from the sampled population. For example,
in the case of the Pollice verso game, a binary decision
comes directly from the player’s choice on whether or not an
approximated output with the quality of q is good enough. Later
in this section we describe how the WinABatt’s and QnA’s
sliders are translated to binary decisions.

4Statistical population is the entire pool from which a sample population is drawn.
Here, the sample population are the gamers who are drawn from the entire pool
of the application users. Thus, statistical population is the entire users.

To calculate the confidence interval, we first need to calcu-
late the sampled binomial proportion for each level of quality.
The sampled binomial proportion is calculated for each approx-
imated output by computing the fraction of votes that deem
a level of quality good enough to the total number of votes.
This sampled binomial proportion is calculated based on the
(n

V otes

,n

GoodEnough

)(q) pair, where n
V otes

is the total number
of decisions on outputs with the quality of q, and n

GoodEnough

is the number of decisions that deem these outputs good enough.
This pair is calculated for each level of quality.

As Equation (9) shows, the Clopper-Pearson exact method
computes the one-sided confidence interval of success rate, ✓(q),
when the number of sample trials, n

V otes

, and the number of
successes among the trials, n

GoodEnough

, are measured for a
sample of the population.

1

1+
n

V otes

�n

GoodEnough

+1

n

GoodEnough

·F[1�↵;2·n
GoodEnough

,2·(n
V otes

�n

GoodEnough

+1)]

<✓

(q)

(9)
In Equation (9), F is the F-critical value that is calculated

based on the F-distribution [22]. The discontinuous nature of
the binomial distribution precludes any interval with exact cov-
erage for all values of n

V otes

and n

GoodEnough

(all possible
values of the binomial proportions). However, because of the
relationship between the cumulative binomial distribution and
the continuous F-distribution, we use the common alternative
form of the binomial confidence interval that provides exact
coverage for all population proportions. F[1�↵;d1,d2] is the
(1�↵) quintile of the F-distribution with d1 and d2 degrees
of freedom. The (1�↵)·100% is degree of confidence on the
interval. For instance, for 95% confidence interval, ↵ is 0.05
and for 90% confidence interval, ↵ is 0.10. The two degrees of
freedom, d1 and d2, decide the shape of the F-distribution based
on the collected statistics, n

V otes

and n

GoodEnough

in our case.
To understand the meaning of ✓

(q), we discuss an exam-
ple deployment of the game that resulted in n

V otes

=60 and
n

GoodEnough

=56 for quality level q=97%. From Equation (9),
the lower limit of the 95% confidence interval, ✓(97%), is 85.4%.
That is, with 95% confidence, we can project that at least 85.4%
of the users will deem 97% quality level acceptable. This projec-
tion is conservative because the Clopper-Pearson exact method
calculates a conservative lower bound for the confidence interval.
The degree of confidence is the probability of the projection
being true. The projection based on 95% confidence interval is
true with probability of 0.95.

For each level of quality, AxGames projects the fraction
of user population (statistical population) that deems that level
of quality acceptable. Using this information, the developer can
choose the level of quality that satisfies a target majority of users.
Translating a choice of quality to a set of binary decisions.

Players in Pollice verso make binary decision on the qual-
ity of an approximated output. These yay/nay decisions can
be directly used in the Clopper-Pearson statistical analysis. In
contrast, the players in WinABatt and QnA, choose a level
of quality using a slider. To be able to use the Clopper-Pearson
statistical analysis, each chosen level of quality needs to be trans-
lated to a series of binary decisions. Intuitively, when a player
chooses the quality level of q

c

to be good enough, she implies

that any level of quality higher than q

c

is also good enough.
Because of the rewarding procedure, the player has the incentive
to choose the lowest acceptable quality. Choosing higher quality
translates to a higher cost. The choice of player also implies that
lower quality outputs are not good enough, otherwise, she would
have chosen a lower quality to pay a lower cost. Based on this
intuition, we convert one chosen level of quality, q

c

, which is in
the range of (q

min

,q

max

) to q

max

�q

low

+1 binary decisions
(Equation (10)).

decision(q)=

(
“GoodEnough” if q�q

c

“Unacceptable” if q<q

c

8q2(q
min

,q

max

)

(10)
By using this conversion, the same method of statistical

projection can be applied to all three games. Moreover, Win-

ABatt and QnA provide larger number of decisions per
round. We did not use this conversion in Pollice verso to
enlarge the number of decisions since the players do not have
an opportunity to see a range of quality losses for each output.
Whereas, WinABatt and QnA allows the players to see the
same output at different quality levels using the slider.

5. Evaluation
To evaluate the effectiveness of the AxGames crowdsourc-

ing framework, we deploy the three games on the web for seven
different applications. We use Amazon’s Mechanical Turk to
recruit a large number of users to play the games. Using the
collected data through the games and our statistical analysis, we
measure what level of quality is acceptable for the majority of
users. We also study how the acceptable level of quality varies
across different applications and how the statistical analysis
effectively captures these trends.
5.1 Methodology
Applications. As Table 1 shows, we examine AxGames us-
ing a wide range of applications from diverse domains that
include image processing, audio processing, optical character
recognition, and speech to text conversion. AxGames is not lim-
ited to these applications and can be used with other applications
that produce outputs perceptible by humans. As shown in Table 1,
our set of programs includes four image processing applications.
The emboss application is an image filter that replaces each pixel
either by a highlight or a shadow. Applying this filter to an image
usually results in an image resembling a paper or metal emboss-
ing of the original image. The jpeg application implements the
JPEG image compression algorithm. The sobel application is an
edge detection algorithm which employs the Sobel operator. The
mean is a sliding-window spatial filter that replaces the center
pixel with the average (mean) of the pixel values in the window
and blurs the image. Additionally, we also evaluate audio-enc,
an audio compression engine that compresses WAV files and
transforms them into MP3 files [23] . The quality metric for the
image processing and audio compression applications is the nor-
malized root mean square error (NRMSE) which is calculated by
comparing an approximated output with its precise counter part.

We also use two applications that recognize text and speech.
The ocr application is an optical character recognition program
that converts raster images of written text to characters. The
speech2txt application is a speech recognition engine that con-

Table 1: Applications and their quality metric.

Description Domain Quality	Metric
emboss Embossing	filter
jpeg Lossy	compression
mean Blurring	filter
sobel Edge	detection
audio-enc Audiio	encoder Audio	Processing
ocr Optial	character	recognition
speech2txt Speech	to	text

Image	
Processing

Pattern
Recognition

Text	Similarity	Ratio

Normalized	Root	Mean	
Square	Error	(NRMSE)

verts speech audio files to text [24]. The quality metric for these
two applications that produce text output is the text similarity
ratio that is computed by comparing the original application
output with the approximated application output. We use an
open-source implementation of the Gestalt Pattern Matching
algorithm [25] to measure the text similarity ratio. This algorithm
assigns higher scores to the outputs that look right to a human
reader. The set of applications have often been used to evaluate
the benefits of approximation techniques in the approximate
computing literature [5, 6, 8, 13, 26, 27].
Approximation techniques. For the image processing appli-
cations, we use a variation of loop perforation [12] as the ap-
proximation technique. This technique skips computing some
of the pixels and instead, copies the values from neighboring
pixels. The rate at which the computation is skipped is the knob
for controlling the quality. We refer to this technique as tiling.
We chose tiling for image processing applications since it is a
simple yet effective coarse-grained approximation technique. For
the audio compression and pattern recognition applications, we
use the same model used in previous fine-grained approximation
works [7, 10, 11, 13, 28] that adds stochastic noise to the compu-
tation by leveraging voltage overscaling, bit-width reduction, and
reducing the DRAM refresh rate. The rate and the magnitude of
noise are the knobs for controlling approximation. We refer to
this technique as fine-grained approximation. We use tiling and
fine-grained approximation to examine AxGames, since they
represent the two main categories of approximation techniques,
coarse-grained and fine-grained, respectively. AxGames is gen-
eral and is not limited to these techniques. This flexibility is in-
herent in the framework since it only needs a set of approximated
outputs with varying degrees of quality loss. Naturally, if the ap-
proximation technique changes, the games need to be redeployed
in order to understand the user response to the new technique.
Datasets. As part of the AxGames framework, we include
the input dataset that contains 200 images, 200 audio files, 200
speech files, and 200 printed text files. We collect this dataset
from open-source databases or public data archives such as
ImageNet [29], Freesound [30], VoxForge [31], and New York
Times TimeMachine [32]. The applications can use this collec-
tion to generate the approximated output database which is used
in the three games. AxGames also assigns one multiple-choice
question to each data element. These questions are used during
the QnA game to provide some context to the gamers when
they trade quality for cost. The questions are part of the frame-
work and do not need to be regenerated for other applications
that produce similar outputs. Additionally, the approximated
output database is generated offline by running the application-
under-study with different settings of the approximation knob.
The AxGames’s requirement is to generate each output with

varying degrees of quality loss. For our experiments, we generate
51 versions of each output, with quality loss ranging from 0%
to 50%, and a step size of 1%.
Game deployment. We separately deploy the three games on
the web for each of the seven applications. In each round, each
game randomly selects an output from the approximated out-
put database. In the Pollice verso game, the players bet
and vote on whether the quality of the approximated output is
good enough. Thus, the game randomly picks a quality loss
for the displayed output. The following ten quality losses are
used for the selected approximated output: 1%, 3%, 5%, 7%,
10%, 15%, 20%, 30%, 40%, and 50%. The other two games
use all 51 quality levels which are generated for each approxi-
mated output and allow the player to pick any of them. We have
made AxGames open source in our artifact portal (http://act-
lab.org/artifacts/axgames). The deployed games, which are used
for evaluations, are also available through the same portal.
Crowdsourcing through Amazon’s Mechanical Turk. To col-
lect a reasonable amount of statistics from a diverse set of users,
we leverage a crowdsourcing Internet marketplace, Amazon’s
Mechanical Turk [33]. The games for each application is played
by 100 individual Mechanical Turk workers (turkers)5. For the
seven applications, 700 turkers contributed to our study. Each
turker plays the games once. We do not allow a worker to play
the games more than once to avoid bias in statistics from a
few heavy gamers. Each game has 10 rounds, our 100 turkers
make a total of 1,000 binary decisions in Pollice verso for
each individual application. Therefore, each of the 10 discrete
levels of quality in Pollice verso receives 100 votes for
each application. As discussed in Section 4, in each round of
WinABatt and QnA, a player’s choice of quality on the
slider is translated to 51 binary decisions, which correspond to
one of the 51 quality levels of an approximated output. Hence,
for each of these two games the turkers make a total of 51,000
(= 100 players ⇥ 10 rounds ⇥ 51 binary decisions per round)
binary decisions for each individual application . Thus, each of
the 51 levels of quality receive 1000 votes in WinABatt and
QnA for each application. This amount of information provides
the grounds for making high confidence statistical projections
on the acceptable level of quality for each application. We also
conduct an optional survey at the end of the games to understand
whether or not the games were entertaining. The survey results
show that 84% of players were entertained.
Game initialization. The results are reported when the games
are deployed with random initial votes for 10 imaginary gamers
on each output. These random initial votes are not used in the
statistical analysis. To understand the effect of initialization, in a
separate experiment, we also asked 10 graduate students to play
the games without regard to the rewards. We then extrapolated
their choices across all the outputs with the same quality. We
observed that both initialization strategies yield similar trends
and therefore, we report the results with random initial values.
This similarity is the result of recruiting large number of turkers

5We received Institutional Review Board (IRB) approval before deploying
AxGames. The request was approved in three weeks.

http://act-lab.org/artifacts/axgames
http://act-lab.org/artifacts/axgames

0%

5%

10%

15%

20%
Po

llic
e

Ve
rs

o

W
in

AB
at

t

Q
nA

Po
llic

e
Ve

rs
o

W
in

AB
at

t

Q
nA

Po
llic

e
Ve

rs
o

W
in

AB
at

t

Q
nA

Po
llic

e
Ve

rs
o

W
in

AB
at

t

Q
nA

Po
llic

e
Ve

rs
o

W
in

AB
at

t

Q
nA

Po
llic

e
Ve

rs
o

W
in

AB
at

t

Q
nA

Po
llic

e
Ve

rs
o

W
in

AB
at

t

Q
nA

emboss jpeg mean sobel audio-enc ocr speech-recog

Pr
oj

ec
te

d
Ac

ce
pt

ab
le

Le

ve
l o

f Q
ua

lit
y

Lo
ss

PO
LL

IC
E

VE
RS

O

W
IN
AB

AT
T

Q
NA

emboss

PO
LL

IC
E

VE
RS

O

W
IN
AB

AT
T

Q
NA

jpeg

PO
LL

IC
E

VE
RS

O

W
IN
AB

AT
T

Q
NA

mean

PO
LL

IC
E

VE
RS

O

W
IN
AB

AT
T

Q
NA

sobel

PO
LL

IC
E

VE
RS

O

W
IN
AB

AT
T

Q
NA

audio-enc

PO
LL

IC
E

VE
RS

O

W
IN
AB

AT
T

Q
NA

ocr

99% of Users 95% of Users 90% of Users 85% of Users 80% of Users

PO
LL

IC
E

VE
RS

O

W
IN
AB

AT
T

Q
NA

speech2txt

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

10
%

10
% 11
%

5% 6%

12
%

1%

5% 5%

10
%

14
%

14
%

0% 0% 0%

7%

11
% 13

%
0% 0% 0%

3%

9% 10
%

0%0% 0%

36
%

15
%

35
%

31
%

25
%

31
%

26
%

Figure 6: Projected acceptable level of quality loss with 95% confidence. These levels of quality are projected by our statistical analysis based
on the game plays of 100 Mechanical Turk workers. Starting from left, each bar corresponds to the level that is projected to satisfy 99%, 95%,
90%, 80%, and 80% of the applications’ users. These projections vary significantly across the applications.

and the fact that the human turkers ultimately make decisions
based on their own perception of the approximated outputs.
5.2 Statistical Projections

Figure 6 shows the projected acceptable level of quality for
each approximated application. The confidence level of these
projections is 95%. As shown, each pair of (application, game)
yields a set of projections. Starting from left, each bar corre-
sponds to the level that satisfies 99%, 95%, 90%, 85%, and 80%
of statistical population of the application users. The details of
these projections are provided in Figure 7 and are discussed later
in the section. As shown in Figure 6, for all the pairs of (applica-
tion, game), the projected level of quality loss that satisfies more
than 99% of the users is 0%. That is, for developers who aim to
satisfy 99% of their users, the specific approximation techniques
that are used in our evaluations (tiling and fine-grained approx-
imation) are not a viable option. However, when the target is
to satisfy a large majority of the users, starting from 90% of
the users, there are opportunities to utilize these approximation
techniques across all the image processing applications. Based
on the statistics from Pollice verso, if a developer chooses
to satisfy 90% of the users, emboss can utilize tiling with 7%
quality loss while jpeg, mean, and sobel can utilize tiling with
1% quality loss. Based on Pollice verso, audio-enc and
ocr can be only approximated if target is to satisfy 85% or less
percentage of the users. For speech2txt, only if the target is to
satisfy 80% or less percentage of the users, approximation can
be enabled given the statistics from Pollice verso.

As Figure 6 depicts, based on the statistics from QnA, all the
applications can be approximated if the target is to satisfy 90%
of the users. For this target, the acceptable level of quality loss is
6% for emboss, 8% for jpeg, 2% for mean, 10% for sobel, 26%
for audio-enc, 8% for ocr, and 3% for speech2txt. As these
results show, there is a clear difference between the three games
when they assess the user satisfaction even for one application.
This difference emanates from the fact that WinABatt and
QnA provide an opportunity for the users to consider tradeoff
and context, while Pollice verso does not. We will discuss
these differences in more detail later in this section.

User response varies significantly across applications. An-
other observation from these results is that the user-driven level
of acceptable quality varies significantly across applications. Con-
sider the four image processing applications that use the same
approximation technique, tiling. Users show relatively higher
tolerance to the tiling approximation for two of the applications,
emboss and sobel. However, for other applications, especially
for mean, the users show significantly lower tolerance. This
significant variation in user response to the same approximation
technique across different applications shows the necessity of
solutions that statistically evaluate the acceptable level of quality.
AxGames is one such solution, that effectively enables the
users to provide statistical feedback to the developers who intend
to leverage approximation techniques. With QnA, 90% of the
users only accept 2% quality loss for mean while they tolerate
26% for audio-enc. These results shed light on the significant
variation of users response to quality loss from approximation
for different applications. To this end, AxGames provides the
grounds for researchers to statistically evaluate their innovations
from the users’ perspective.
Users show higher tolerance to approximation when they con-

sider cost or context. From the results in Figure 6, it is evident
that users show higher level of tolerance to the approximation
when playing WinABatt and QnA. Whereas the level of
tolerance to approximation is lower in Pollice verso. Intu-
itively, in these two games the players choose a level of accept-
able quality in a cost-conscious manner while also considering
the context in the case of QnA. In the case of Pollice verso,
the players vote only based on their personal impression of the
approximated output without a chance to explore the cost-quality
tradeoff. On the other hand, the other two games, WinABatt

and QnA, introduce a notion of tradeoff between cost and bene-
fits of approximation. Moreover, the players’ choice of quality in
QnA is driven by their ability to answer the associated multiple
choice question with the output. This analysis shows that these
three games collectively provide a deeper understanding of the
user’ reaction to the approximation technique. The developer
may choose to use the results from any of these games on her

POLLICE VERSO WINABATT QNA

95% confidence 90% confidence99% confidence 97.5% confidence
em

bo
ss

(a) (b) (c)
Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

1% 3% 5% 7% 10% 15% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

1% 3% 5% 7% 10% 15% 20% 30% 40% 50%

(d) (e) (f)

jp
eg

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

1% 3% 5% 7% 10% 15% 20% 30% 40% 50%

(g) (h) (i)

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

1% 3% 5% 7% 10% 15% 20% 30% 40% 50%

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

(s) (t) (u)

m
ea

n
so

be
l

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

1% 3% 5% 7% 10% 15% 20% 30% 40% 50%

oc
r

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

1% 3% 5% 7% 10% 15% 20% 30% 40% 50%

sp
ee

ch
2t
xt

au
di
o-

en
c

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

1% 3% 5% 7% 10% 15% 20% 30% 40% 50%
0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

0% 10% 20% 30% 40% 50%

Quality Loss

0%

20%

40%

60%

80%

100%

Fr
ac

ti
on

of
U

se
rs

Figure 7: The collected statistics and the statistical projections. The bars show the fraction of players that selected a certain level of quality loss
as “Good Enough.” The lines represent the lower bound of the binomial confidence interval with different degrees of confidence, including 99%,
97.5%, 95%, and 90%.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Image Index

0%

10%

20%

30%

40%

50%

Q
ua

lit
y

Lo
ss

80% of User
90% of User

(a) Distribution of the quality choices in WinABatt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Image Index

0%

10%

20%

30%

40%

50%

Q
ua

lit
y

Lo
ss

80% of User
90% of User

(b) Distribution of the quality choices in QnA

Figure 8: The box plot distribution of the players’ choices of quality for sobel. The dashed horizontal lines show the projected acceptable level of
quality loss that satisfies 80% and 90% of the users with 95% confidence (a) based on WINABATT and (b) QNA.

(a) Precise output (b) Output with 10% quality loss. (c) Output with 14% quality loss. (d) Output with 30% quality loss.

Question:What can you see in the image? Correct answer: Horse racing Wrong answers: Bowling, Bridge, Buffalo wings
Figure 9: Outputs from the edge detection filter, sobel, for image 13 in Figure 8(b). The leftmost output is the precise version and the rest are
the approximated outputs. The approximated outputs (b) and (c) have 10% and 14% of quality loss that satisfy 90% and 80% of the users,
respectively. The output (d) has 30% of quality loss, which is the median of the votes for the image 13 from the QNA plays.

own discretion depending on her constraints on user experience
and her target deployment environment.
5.3 Collected Statistics from the Games

The collected statistics from the games are presented in Fig-
ure 7. The bars represent the fraction of players who chose “Good
Enough” for each level of quality loss. Our analysis uses the
Clopper-Pearson method to computes the one-sided confidence
interval for each level of quality loss. This one-sided lower-bound
conservatively projects what fraction of the users will deem a
particular level of quality loss as “Good Enough.” The lines in
Figure 7 represent the statistical projections with different levels
of confidence, including 99%, 97.5%, 95%, and 90%. As shown,
the projection lines fall below the collected statistics from the
sampled population (the turkers who played the games). That is
because the Clopper-Pearson confidence interval, by definition,
covers the sampled statistics in a conservative manner. A point on
a projection line with the (x,y) coordinates predicts that at least
y% of the users will deem x% quality loss as “Good Enough.”
For instance, suppose that we want to use the statistical results
from WinABatt to find an acceptable level of quality for
emboss. Let’s target to find the quality loss level that provides
satisfactory experience at least for 90% of the users with 95%
confidence level. The quality loss is 7%, which is the x coordi-
nate of the intersection point between the y=90% line and the
red dashed projection line in Figure 7(b). The results in Figure 6
are obtained in this manner and also summarizes the statistical
data given in Figure 7. As depicted, the results for Pollice

verso do not decrease monotonically whereas the results for
WinABatt and QnA do. That is because only for these two

game, the statistical analysis converts the players’ selected level
to binary decisions for all the levels of quality loss (see Section 4).

From the results in Figure 7, we observe different patterns for
the different classes of applications. For the image processing
applications, the graphs have three regions, the top region where
the majority of users agree on the low quality loss; the middle
region where there is no clear consensus among the users; and
the tail where the majority of users reject low quality outputs
The quality level from which the middle region starts captures
the point that the majority’s opinion is shifting. This point of shift
in opinion can be found by calculating changes in the derivative
of the projection lines. This point of shift may be used by the
developers to choose the acceptable level of quality. AxGames

provides the opportunity to find this point of shift for the devel-
opers. Instead of choosing the level of quality loss that certain
percentage of users prefer, a developer can optimistically choose
this point of shift in opinion.

The audio-enc application, which generates auditory output,
shows a different pattern. The gamers show a significantly higher
tolerance to the quality loss in the audio outputs. The majority of
users tolerate the quality loss up to a significantly high level, after
which the user satisfaction drastically declines. For the pattern
recognition applications, ocr and speech2txt, the graphs show
that the fraction of satisfied users almost linearly decreases as the
quality loss increases. These two applications generate textual
output. Unlike the other applications, there is not a clear point
of shift in the crowd’s opinion about the quality loss. These dif-
ference are significant and depend on the inherent characteristics
of application, its output format, and the applied approximation
techniques. Our experimental results show that the AxGames

1.0
1.5
2.0
2.5
3.0

80% 85% 90% 95% 100%

1.0
1.5
2.0
2.5
3.0

80% 85% 90% 95% 100%
1
3
5
7
9

11
13

80% 85% 90% 95% 100%

1
5
9

13
17

80% 85% 90% 95% 100%

1
3
5
7
9

11
13

80% 85% 90% 95% 100%

1
5
9

13
17

80% 85% 90% 95% 100%
1.0
1.5
2.0
2.5
3.0

80% 85% 90% 95% 100%

1.0
1.5
2.0
2.5
3.0

80% 85% 90% 95% 100%

Im
pr

ov
em

en
t i

n
En

er
gy

 ⨉
 D

el
ay

Output Quality

Im
pr

ov
em

en
t i

n
En

er
gy

 ⨉
 D

el
ay

% Users Satisfied

em
bo

ss

(a) (b)

Im
pr

ov
em

en
t i

n
En

er
gy

 ⨉
 D

el
ay

Output Quality

Im
pr

ov
em

en
t i

n
En

er
gy

 ⨉
 D

el
ay

% Users Satisfied

jp
eg

(c) (d)

Im
pr

ov
em

en
t i

n
En

er
gy

 ⨉
 D

el
ay

Output Quality
Im

pr
ov

em
en

t i
n

En
er

gy
 ⨉

 D
el

ay
% Users Satisfied

m
ea

n

(e) (f)

Im
pr

ov
em

en
t i

n
En

er
gy

 ⨉
 D

el
ay

Output Quality

Im
pr

ov
em

en
t i

n
En

er
gy

 ⨉
 D

el
ay

% Users Satisfied

so
be

l

(g) (h)

AXGAMES AXGAMES

AXGAMES AXGAMES

Figure 10: Improvement in energy-delay products vs. output quality (a, c, e, and g), and vs. % users satisfied. (b, d, f, and h). The results in (b),
(d), (f), and (h) are based on the statistics collected from the QNA plays.

framework can effectively capture such patterns that need to be
taken into account when approximation is employed.
5.4 User Response Variations

We investigate the user response variation across the same
approximated images in Figure 8. Figure 8 shows the distribution
of the responses from the players for a randomly selected subset
of the output images from sobel. The trends are similar for
the other applications. This distribution is shown as a box plot.
The bottom and top of each box represent the lower and upper
quartiles, respectively, and the band near the middle of the box is
the 50th percentile (the median). The bottom whisker represents
the lowest datum that is still within 1.5 inter quartile range (IQR)
of the lower quartile. The top whisker denotes the highest datum
that is still within 1.5 IQR of the upper quartile. The dashed
horizontal lines show the projected acceptable levels of quality
loss that satisfy 80% and 90% of the users with 95% confidence.
It is even visually evident that these levels of quality cover their
corresponding majority of users.

As expected, there is a large variation in the players choices.
That is each player is providing her own personal judgment on
the quality of the output, which is one of the main objectives of
the games. Interestingly, the variation is higher in the QnA game.
We investigate this higher variation in Figure 9 by showing the
output image with the highest variation in Figure 8(b), image 13.
The associated question with this image is “What can you see
in the image: Horse racing/Bowling/Bridge/Buffalo wings?”.
This question can be answered even with high quality loss (30%)
as shown Figure 9. However, it is understandable if a player
chooses a lower quality loss to answer the question. Qualitatively,
the context provided by the question allows a fraction of the users
to choose levels of quality loss that are relatively higher. We spec-
ulate that approximation can be applied more aggressively if
the output of this image processing is fed to a machine learning
algorithm that performs scene detection or object recognition.
5.5 Changing the Tradeoff for Approximate Computing

The AxGames framework enables programmers to change
the tradeoff between quality and performance-energy gains into
the tradeoff between the users’ satisfaction and the gains. We
demonstrate this ability by measuring the speedup and energy
savings for the image processing applications. A full investi-
gating of the benefits of approximation is out of the scope of

this work. This study is not to advocate approximation or show
how much gains are possible; rather, it is to investigate the users’
perspective on the output quality loss. For the performance and
energy modeling, we use the same setup as the one used in [9].
We use the MARSSx86 x86-64 cycle-accurate simulator [34]
and McPAT [35] for timing and energy modeling, respectively.
The processor is modeled after a single-core Intel Nehalem (3.4
GHz with 0.9 V at 45 nm). The use statistics are based on QnA.

Figure 10 shows the improvement in energy-delay product
when the output quality and the fraction of satisfied users change
from 80% to 100%. The baseline is the application running on
the processor without any approximation. Figure 10(a, c, e, and
g) represent the tradeoff between quality and the gains from
approximation while Figure 10(b, d, f, and h) represent the trade-
off between the user satisfaction and the gains. All applications
see a disparity in the energy-delay product improvement for the
same level of quality loss and fraction of satisfied users. For
instance, in Figure 10(e), mean sees 8.9⇥ energy-delay product
improvement with 95% quality. Even though this level of quality
seems high, it only satisfies about 80% of users. For mean,
as shown in Figure 10(f), to satisfy 95% of users, only 1.3⇥
energy-delay product improvement can be achieved, which is
significantly lower than the gains that can be achieved with the
95% quality. Although the results in Figure 10 are specific to the
pair of (application, approximation technique), they show a clear
change in the tradeoffs when user response is considered.

While many approximate techniques provide significant bene-
fits, their utility cannot be established without understanding the
users’ perspective. Our framework and our analysis are impartial
to approximation techniques and are intended to shed light on
how application users react to approximation. The games and the
statistical analysis provide an effective mean for developers to
understand the user experience before employing approximation.
In fact, the developers can explore the tradeoffs and the benefits
in a new light that considers users’ perspective.
5.6 Discussion

Currently, AxGames is implemented for applications that
directly produce human-perceivable outputs, such as image pro-
cessing, audio processing, and pattern recognition applications.
These programs represent a large body of applications that are
designed for humans as the end users. These applications can ben-

efit from approximation due to the inherent tolerance of humans
to inexact results. In fact, many of the approximate computation
research includes such applications [5, 6, 8–10, 12, 13, 27, 28].
Furthermore, these classes of applications, such as Instagram, Mi-
crosoft HoloLens, Qualcomm Vuforia, are gaining prominence
as the computing services, more and more, aim to provide natural
and targeted experiences for the end users. This trend has been
amplified by prevalence of mobile devices and will grow in im-
portance as wearable electronics is gaining traction and smart and
interactive home/office environments are emerging. Moreover,
even complex machine learning algorithms are being deployed
in interactive data visualization [36] and analytics tools [37] that
allow humans to interact with complex and large amounts of
data. Besides the direct use of AxGames in these domains, the
results of AxGames can be used as an upper bound for inaccu-
racy in cases where the approximate output is fed to a machine
learning engine. Humans are the ultimate recognition engines.

As an end-to-end attempt toward crowdsourcing the target
quality determination, our approach takes an initial and effective
step toward enabling the end users to become a helping force in
the development and deployment of approximation techniques.

6. Related Work
There has been a substantial amount of effort to leverage

crowdsourcing tools and games to solve computationally diffi-
cult problems. However, there is a lack of solutions that leverage
crowdsourcing or game design for approximate computing which
statistically determine the level of quality considered acceptable
by the majority of application users. This paper provides one
such solution and lies at the intersection of (a) approximate
computing, (b) crowdsourcing, and (c) game with a purpose.
Approximate computing. A growing body of recent work
explores a variety of approximation techniques. These tech-
niques include (a) approximate storage designs [38, 39] which
trade data quality for reduced energy [38] and larger capac-
ity [39], (b) voltage over-scaling [7, 13, 28, 40–43], (c) com-
putation and data sampling [12, 14, 44, 45], (d) loop early
termination [46], (e) computation substitution [5, 46–48], (f)
memoization [6, 49, 50], (g) limited fault recovery [44, 51–56],
(h) precision scaling [10, 57], (i) approximate circuit synthe-
sis [27, 58–63], and (j) neural acceleration [8, 9, 26]. Many of
these solutions include applications which produce perceptible
outputs for users. Although these techniques report promising
benefits from approximate computing, they do not explore the
acceptability of the quality loss from the users’ perspective.
Crowdsourcing. The reCAPTCHA [64] project is a successful
crowdsourcing application in production. This system uses the
CAPTCHA, human Turing test, to classify text images from
scanned books when other techniques fail. Automan [65] is
an automatic crowd programming system which enables the
integration of human computation in conventional programming
languages and rigorously studies scheduling, budgeting, and
statistical quality control in programming with human computa-
tional resources. TurKit [66] provides a programming model to
integrate human computation in JavaScript using templates which
provide close integration with Mechanical Turk. TurKit also sup-
ports checkpointing and recovery. Russell et al. [67] developed a

web-based tool that leverages crowdsourcing to identify objects
and locations in images and annotate them. These research efforts
are not concerned with quality loss in approximate computing.
Games with a purpose. Games with a purpose provide an
opportunity to engage the crowd in entertaining applications
while providing insight to researchers. Several prior works have
successfully utilized game-based crowdsourcing to label ran-
dom images and locate objects [68–70]. Furthermore, Dietl et al.
[71] proposed to transform verification tasks into a puzzle games
which can be solved by humans. The solution of the puzzle is then
translated back and used for proving correctness and verification.
Foldit [72] is an online multiplayer game whose players interact
with protein structures while they compete and collaborate to op-
timize the computed energy. They discovered that players of their
game are able to search the state space of proteins configurations
faster than computational algorithms. We are inspired by these
efforts and exclusively developed a solution that uses games with
a purpose and crowdsourcing to statistically determine the users’
acceptable level of quality for approximate computing.

7. Conclusion
Approximate computing is an emerging area that breaks the

long-held fundamental abstraction of near-perfect accuracy in
PL [10, 11, 13, 73–75], OS [76], and Architecture [5–9, 26, 38].
While these techniques provide promising gains, they cause
quality loss whose effects on the users are not well understood;
leaving approximation in a position of questionable utility. Many
of these inspiring studies argue that a certain quality loss may
be acceptable without systematically considering the users’ per-
spective. It is timely to systematically explore and study users’
perspective on the effects of approximation. This paper takes an
effective initial step in this direction. This work provided an auto-
mated programming tool–rather unconventional–to methodically
utilize crowdsourcing in identifying the desirable application out-
put quality from the final users. This readily available tool pro-
vides a path for the research community to better assess their inno-
vative approximation techniques. The framework enables devel-
opers to conveniently study user responses at scale and gain statis-
tical confidence when deploying approximated applications. Our
results from examining a variety of applications show the neces-
sity of solutions such as AxGames since the crowd’s response
to approximation varies drastically across different applications.
Moreover, when the users consider tradeoff and context, they tend
of to be more tolerant to approximation. These results suggests
that AxGames can add an unexplored, yet important, dimen-
sion to the research and development in approximate computing.

8. Acknowledgments
We thank the anonymous reviewers for their insightful com-

ments. We thank Richard Lipton and Faramarz Fekri for discus-
sions that helped refine this work. We also thank Zhijian Li, Nick
Liu, Elizabeth Perakis, Akshay Sawant, and Wen Xin for assis-
tance in developing the games. We thank Amir Yazdanbakhsh
for his contributions to energy-performance measurements. This
work was in part supported by Qualcomm Innovation Fellowship,
NSF award CCF#1553192, Semiconductor Research Corpora-
tion contract #2014-EP-2577, and a gift from Google.

References
[1] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankar-

alingam, and Doug Burger. Dark silicon and the end of multicore scaling.
In ISCA, 2011.

[2] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia
Ailamaki. Toward dark silicon in servers. IEEE Micro, 31(4):6–15,
July–Aug. 2011.

[3] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Gar-
cia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and
Michael Bedford Taylor. Conservation cores: Reducing the energy of
mature computations. In ASPLOS, 2010.

[4] John Gantz and David Reinsel. Extracting value from
chaos. http://www.emc.com/collateral/analyst-reports/

idc-extracting-value-from-chaos-ar.pdf.
[5] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hormati,

and Scott Mahlke. Sage: Self-tuning approximation for graphics engines.
In MICRO, 2013.

[6] Mehrzad Samadi, Davoud Jamshidi, Janghaeng Lee, and Scott Mahlke.
Paraprox: Pattern-based approximation for data parallel applications. In
ASPLOS, 2014.

[7] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger.
Architecture support for disciplined approximate programming. In
ASPLOS, 2012.

[8] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Neural
acceleration for general-purpose approximate programs. In MICRO, 2012.

[9] Renée St. Amant, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites,
Hadi Esmaeilzadeh, Arjang Hassibi, Luis Ceze, and Doug Burger. General-
purpose code acceleration with limited-precision analog computation. In
ISCA, 2014.

[10] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam,
Luis Ceze, and Dan Grossman. EnerJ: Approximate data types for safe
and general low-power computation. In PLDI, 2011.

[11] Jongse Park, Hadi Esmaeilzadeh, Xin Zhang, Mayur Naik, and William
Harris. Flexjava: Language support for safe and modular approximate
programming. In FSE, 2015.

[12] Stelios Sidiroglou, Sasa Misailovic, Henry Hoffmann, and Martin Rinard.
Managing performance vs. accuracy trade-offs with loop perforation. In
FSE, 2011.

[13] Michael Carbin, Sasa Misailovic, and Martin Rinard. Verifying quantitative
reliability for programs that execute on unreliable hardware. In OOPSLA,
2013.

[14] Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D. Nguyen.
Approxhadoop: Bringing approximations to mapreduce frameworks. In
ASPLOS, 2015.

[15] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. Load value
approximation. In MICRO, 2014.

[16] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate
storage in solid-state memories. In MICRO, 2013.

[17] C. J. Clopper and E. S. Pearson. The use of confidence or fiducial limits il-
lustrated in the case of the binomial. Biometrika, 26(4):404–413, Dec. 1934.

[18] Sean Wallis. Binomial confidence intervals and contingency tests:
mathematical fundamentals and the evaluation of alternative methods.
Journal of Quantitative Linguistics, 20(3):178–208, July. 2013.

[19] A/b testing. https://en.wikipedia.org/wiki/A/B testing.
[20] Edwin B. Wilson. Probable inference, the law of succession, and statistical

inference. Journal of the American Statistical Association, 22(158):
209–212, Jun. 1927.

[21] Jeff Sauro and James R. Lewis. Estimating completion rates from
small samples using binomial confidence intervals: Comparisons and
recommendations. In HFES, 2005.

[22] Morris H. DeGroot. Probability and Statistics. Chapman & Hall, 1974.
[23] Lame mp3 encoder. http://lame.sourceforge.net.
[24] Speech recognition toolkit. http://cmusphinx.sourceforge.net.
[25] John W Ratcliff and David E Metzener. Pattern matching: The gestalt

approach. Dr. Dobb’s Journal, 13(7):46, 1988.
[26] Amir Yazdanbakhsh, Jongse Park, Hardik Sharma, Pejman Lofti-Kamran,

and Hadi Esmaeilzadeh. Neural acceleration for gpu throughput processors.
In MICRO, 2015.

[27] Amir Yazdanbakhsh, Divya Mahajan, Bradley Thwaites, Jongse Park,
Anandhavel Nagendrakumar, Sindhuja Sethuraman, Kartik Ramkrishnan,
Nishanthi Ravindran, Rudra Jariwala, Abbas Rahimi, Hadi Esmaeilzadeh,
and Kia Bazargan. Axilog: Language support for approximate hardware
design. In DATE, 2015.

[28] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin Ri-
nard. Chisel: Reliability- and accuracy-aware optimization of approximate
computational kernels. In OOPSLA, 2014.

[29] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In CVPR, 2009. URL
http://image-net.org.

[30] Freesound.org. https://freesound.org.
[31] Voxforge. https://developer.nvidia.com/cuda-llvm-compiler.
[32] The new york times timesmachine. http://timesmachine.nytimes.com.
[33] Amazon’s mechanical turk. https://www.mturk.com.
[34] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSSx86:

A full system simulator for x86 CPUs. In DAC, 2011.
[35] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M.

Tullsen, and Norman P. Jouppi. McPAT: An integrated power, area, and
timing modeling framework for multicore and manycore architectures. In
MICRO, 2009.

[36] Jaegul Choo, Changhyun Lee, Hannah Kim, Hanseung Lee, Barry L.
Drake, and Haesun Park. Apolo: Making sense of large network data by
combining rich user interaction and machine learning. In VAST, 2014.

[37] Duen Horng (Polo) Chau, Aniket Kittur, Jason I. Hong, and Christos
Faloutsos. Apolo: Making sense of large network data by combining rich
user interaction and machine learning. In CHI, 2011.

[38] Song Liu, Karthik Pattabiraman, Thomas Moscibroda, and Benjamin
Zorn. Flikker: Saving refresh-power in mobile devices through critical data
partitioning. In ASPLOS, 2011.

[39] Adrian Sampson, Jacob Nelson, Karin Strauss, and Luis Ceze. Approximate
storage in solid-state memories. In MICRO, 2013.

[40] Lakshmi N. Chakrapani, Bilge E. S. Akgul, Suresh Cheemalavagu,
Pinar Korkmaz, Krishna V. Palem, and Balasubramanian Seshasayee.
Ultra-efficient (embedded) SOC architectures based on probabilistic
CMOS (PCMOS) technology. In DATE, 2006.

[41] Sriram Narayanan, John Sartori, Rakesh Kumar, and Douglas Jones.
Scalable stochastic processors. In DATE, 2010.

[42] Rajamohana Hegde and Naresh Shanbhag. Energy-efficient signal
processing via algorithmic noise-tolerance. In ISLPED, 1999.

[43] Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn Jacobson, and
Subhasish Mitra. ERSA: error resilient system architecture for probabilistic
applications. In DATE, 2010.

[44] Sasa Misailovic, Stelios Sidiroglou, Hank Hoffman, and Martin Rinard.
Quality of service profiling. In ICSE, 2010.

[45] Martin Rinard, Henry Hoffmann, Sasa Misailovic, and Stelios Sidiroglou.
Patterns and statistical analysis for understanding reduced resource
computing. In Onward!, 2010.

[46] Woongki Baek and Trishul Chilimbi. Green: a framework for supporting
energy-conscious programming using controlled approximation. In PLDI,
2010.

[47] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan
Edelman, and Saman Amarasinghe. Petabricks: a language and compiler
for algorithmic choice. In PLDI, 2009.

[48] John Sartori and Rakesh Kumar. Branch and data herding: Reducing
control and memory divergence for error-tolerant gpu applications. IEEE
Transactions on Multimedia, 15(2), 2013.

[49] Carlos Alvarez, Jesus Corbal, and Mateo Valero. Fuzzy memoization for
floating-point multimedia applications. IEEE Trans. on Computers, 54
(7), 2005.

[50] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychronis Xekalakis.
Eliminating redundant fragment shader executions on a mobile gpu via
hardware memoization. In ISCA, 2014.

[51] Marc de Kruijf, Shuou Nomura, and Karthikeyan Sankaralingam. Relax:
an architectural framework for software recovery of hardware faults. In
ISCA, 2010.

[52] Xuanhua Li and Donald Yeung. Application-level correctness and its
impact on fault tolerance. In HPCA, 2007.

http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
https://en.wikipedia.org/wiki/A/B_testing
http://lame.sourceforge.net
http://cmusphinx.sourceforge.net
http://image-net.org
https://freesound.org
https://developer.nvidia.com/cuda-llvm-compiler
http://timesmachine.nytimes.com
https://www.mturk.com

[53] Xuanhua Li and Donald Yeung. Exploiting application-level correctness
for low-cost fault tolerance. Journal of Instruction-Level Parallelism, 2008.

[54] Marc de Kruijf and Karthikeyan Sankaralingam. Exploring the synergy
of emerging workloads and silicon reliability trends. In SELSE, 2009.

[55] Yuntan Fang, Huawei Li, and Xiaowei Li. A fault criticality evaluation
framework of digital systems for error tolerant video applications. In ATS,
2011.

[56] Vicky Wong and Mark Horowitz. Soft error resilience of probabilistic
inference applications. In SELSE, 2006.

[57] Swagath Venkataramani, Vinay K. Chippa, Srimat T. Chakradhar, Kaushik
Roy, and Anand Raghunathan. Quality programmable vector processors
for approximate computing. In MICRO, 2013.

[58] Ashish Ranjan, Arnab Raha, Swagath Venkataramani, Kaushik Roy, and
Anand Raghunathan. Aslan: Synthesis of approximate sequential circuits.
In DATE, 2014.

[59] Swagath Venkataramani, Amit Sabne, Vivek Kozhikkottu, Kaushik Roy,
and Anand Raghunathan. Salsa: Systematic logic synthesis of approximate
circuits. In DAC, 2012.

[60] Jin Miao, A. Gerstlauer, and M. Orshansky. Approximate logic synthesis
under general error magnitude and frequency constraints. In ICCAD, 2013.

[61] Kumud Nepal, Yueting Li, R. Iris Bahar, and Sherief Reda. ABACUS: A
technique for automated behavioral synthesis of approximate computing
circuits. In DATE, 2014.

[62] Avinash Lingamneni, Christian Enz, Krishna Palem, and Christian Piguet.
Synthesizing parsimonious inexact circuits through probabilistic design
techniques. ACM Transactions on Embedded Computing Systems, 12(2s):
93:1–93:26, May 2013.

[63] Avinash Lingamneni, Kirthi Krishna Muntimadugu, Christian Enz,
Richard M. Karp, Krishna V. Palem, and Christian Piguet. Algorithmic
methodologies for ultra-efficient inexact architectures for sustaining
technology scaling. In CF, 2012.

[64] Luis Von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and
Manuel Blum. recaptcha: Human-based character recognition via web

security measures. Science, 321(5895):1465–1468, 2008.
[65] Daniel W Barowy, Charlie Curtsinger, Emery D Berger, and Andrew

McGregor. Automan: A platform for integrating human-based and digital
computation. In OOPSLA, 2012.

[66] Greg Little, Lydia B Chilton, Max Goldman, and Robert C Miller. Turkit:
human computation algorithms on mechanical turk. In UIST, 2010.

[67] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T
Freeman. Labelme: a database and web-based tool for image annotation.
International Journal of Computer Vision, 77(1-3):157–173, 2008.

[68] Luis Von Ahn. Games with a purpose. Computer, 39(6):92–94, 2006.
[69] Luis Von Ahn, Ruoran Liu, and Manuel Blum. Peekaboom: a game for

locating objects in images. In CHI, 2006.
[70] Luis Von Ahn and Laura Dabbish. Labeling images with a computer game.

In CHI, 2004.
[71] Werner Dietl, Stephanie Dietzel, Michael D Ernst, Nathaniel Mote, Brian

Walker, Seth Cooper, Timothy Pavlik, and Zoran Popović. Verification
games: Making verification fun. In FTfJP, 2012.

[72] Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee,
Michael Beenen, Andrew Leaver-Fay, David Baker, Zoran Popovi, and
Foldit players. Predicting protein structures with a multiplayer online game.
Nature, 466(7307):756–760, 2010.

[73] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic,
Anant Agarwal, and Martin Rinard. Dynamic knobs for responsive
power-aware computing. In ASPLOS, 2011.

[74] J. Bornholt, T. Mytkowicz, and K. McKinley. Uncertain<T>: A first-order
type for uncertain data. In ASPLOS, 2014.

[75] Michael Ringenburg, Adrian Sampson, Isaac Ackerman, Luis Ceze,
and Dan Grossman. Monitoring and debugging the quality of results in
approximate programs. In ASPLOS, 2015.

[76] Phillip Stanley-Marbell and Martin Rinard. Lax: Driver interfaces for
approximate sensor device access. In HotOS, 2015.

	asplos16-web
	rest
	Introduction
	Overview
	The Three Games
	Pollice verso
	WinABatt
	QnA

	Statistical Analysis
	Binomial Proportion Confidence Interval

	Evaluation
	Methodology
	Statistical Projections
	Collected Statistics from the Games
	User Response Variations
	Changing the Tradeoff for Approximate Computing
	Discussion

	Related Work
	Conclusion
	Acknowledgments

