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Abstract
Deep Neural Networks (DNNs) are compute-intensive

learning models with growing applicability in a wide range
of domains. FPGAs are a compelling alternative to accelerate
deep networks. However, using FPGAs for DNN acceleration is
challenging since it requires long design cycles and expertise in
hardware design. This work takes on this challenge, but instead
of designing just an accelerator for a particular DNN model,
it devises DNNWEAVER; a framework that automatically
generates a synthesizable accelerator for a given (DNN,
FPGA) pair using hand-optimized templates. DNNWEAVER
uses Caffe [1] as the programming interface to provide a high
level of abstraction to the programmers. We use DNNWEAVER
to generate accelerators for the combinations of five different
deep networks and two different FPGAs, Xilinx Zynq and Altera
Stratix V. We rigorously compare the generated accelerators
to multicore CPUs (ARM Cortex A15 and Xeon E3) and
many-core GPUs (Tegra K1, GTX 650 Ti, and Tesla K40).
In comparison, the generated accelerators deliver superior
performance compared to CPUs and superior efficiency
compared to GPUs; without requiring the programmers to
participate in the arduous task of hardware design.

1. Introduction
Deep Neural Networks (DNNs) are rapidly gaining traction in a
wide range of applications [2, 3, 4, 5, 6, 7]. While their demand
is growing, the benefits from general-purpose platforms are
diminishing [8, 9]. In the light of these trends, the research
community is increasingly turning to specialized accelera-
tors [10, 11, 12, 13]. ASIC accelerators provide significant
gains in performance and efficiency for deep networks [10, 11]
at the price of high non-recurring engineering costs over long
design periods. FPGAs are an attractive alternative and provide
an intermediate point between the efficiency of ASICs and the
generality of conventional processors. Nonetheless, FPGAs
still require extensive hardware expertise and long design
cycles. In fact, several inspiring research works [12, 13, 14, 15]
have made extensive efforts to provide FPGA accelerators for
specific DNN models, usually tailored for a particular FPGA
platform. However, there is a lack of comprehensive and
automated solutions to make FPGAs available to a broader com-

munity of DNN application developers who use a wide range
of DNN models, and often lack any hardware design expertise.

This work seeks to provide such a solution by developing
DNNWEAVER, a comprehensive framework that generates
synthesizable accelerators for a variety of FPGA platforms.
The key challenge in developing DNNWEAVER is completely
disengaging the programmers from hardware design while
providing significant performance and efficiency gains with
FPGAs. This paper addresses this challenge and makes the
following contributions:
(1) We develop a novel macro-dataflow virtual machine for

DNN accelerators. The ISA for this virtual machine en-
ables DNNWEAVER to expose a high-level programming
interface, and target different FPGAs and employ hardware
optimizations without exposing them to the software.

(2) Instead of just designing an accelerator for DNNs,
we develop hand-optimized template designs that are
scalable and highly customizable. The templates provide
a clustered hierarchical architecture that is shrunk or
expanded by DNNWEAVER to match the needs of a given
(DNN, FPGA) pair.

(3) We develop a comprehensive compilation workflow that
takes in the virtual ISA and generates the static execution
schedule of the DNN accelerator as state machines and
microcodes for the generated accelerator.

We use DNNWEAVER to generate accelerators for five
different deep networks and two different FPGAs, Xilinx Zynq
and Altera Stratix V. We rigorously compare the generated
accelerators to both multicore CPUs (ARM Cortex A15 and
Xeon E3) and many-core GPUs (Tegra K1, GTX 650 Ti, and
Tesla K40). The results are summarized as follows:
(1) On (Zynq, Stratix V), the DNNWEAVER-generated

accelerators provide (7.6×, 43×) and (1.3×, 7.1×)
average speedup over ARM and Xeon, respectively.

(2) The generated accelerators for (Zynq, Stratix V) deliver
(2.2×, 1.2×), (3.6×, 2×), and (2.8×, 1.6×) higher
Performance-per-Watt when compared to Tegra, GTX 650,
and Tesla, respectively.

These results show that DNNWEAVER takes an effective
step towards making FPGAs available to DNN application
developers without involving them in hardware design.



High-Level
DNN

Specifica1on
Translator

Macro	
Dataflow	
Graph

Design	
Weaver

Accelerator	
Core	
Design	

Integrator

Memory	
Interface

Synthesizable
Accelerator

Execu1on	
Schedule

DNN	Model	
Layout

FPGA

Memory
Berkeley	Caffe Weaver	ISA Verilog

Hand-Op1mized	
Design	Templates

Verilog Weaver	Parameters

FPGA	
Specifica1on

Verilog Verilog

21 3

Figure 1: Overview of DNNWEAVER which takes in high-level specification of a DNN and target FPGA and generates the
accelerator design as synthesizable Verilog along with the accelerator execution schedule and the layout of DNN model in memory.

2. Overview of DNNWEAVER
This work seeks to devise a comprehensive solution for
utilizing a variety of FPGAs to accelerate a large class of
DNNs. The objective is to offer a solution that (1) completely
disassociates programmers from the details of hardware design
and optimization while (2) providing a scalable and reusable
FPGA acceleration platform, which delivers high performance
and large efficiency gains for continuously changing DNN
models on a variety of FPGA platforms. To achieve these two
conflicting objectives, we developed DNNWEAVER which
combines hand-optimized scalable template designs with an
automated workflow that customizes the templates to match a
given (DNN, FPGA) pair of specifications. Figure 1 illustrates
the DNNWEAVER automated workflow comprised of three
software components; (1) the Translator, (2) the Design
Weaver, and (3) the Integrator. This section overviews these
components after describing the programming interface.
Programming interface. The input to DNNWEAVER is a
high-level specification of the DNN in Berkeley Caffe
format [1]. Caffe is a widely used open-source deep learning
framework that takes the DNN specification as input and
computes the given model on the CPU and GPU platforms.
Using Caffe as the programming interface for DNNWEAVER
enables programmers to immediately transfer their DNNs from
software to FPGA with no additional effort.
1 Translator. The first component of DNNWEAVER translates

the Caffe specification of a DNN to our coarse-grained ISA
that represents the DNN as a macro dataflow graph. We choose
this coarse-grained abstraction to provide a unified hardware-
software interface and enable layer-specific optimizations in
the accelerator’s microarchitecture without exposing them to
the software. Furthermore, the ISA can be extended to support
forthcoming layers or parameters. A one-time effort is required
to develop the corresponding hardware templates. Section 3
describes the ISA.
2 Design Weaver. By accepting the instructions representing

the macro dataflow graph of the DNN, the Design Weaver
generates a synthesizable Verilog implementation of the
accelerator code using hand-optimized design templates. These
templates provide a highly customizable, modular, and scalable
implementation for the Design Weaver that automatically
mutates and specializes the templates for the macro dataflow
graph. A central aspect of this work is tuning the accelerator
design to best utilize the available FPGA resources and achieve
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Figure 2: Instructions of the macro-dataflow virtual machine.

high performance and efficiency. Key FPGA resources include
DSP slices (hard ALU blocks), on-chip Block RAMs (hard
SRAM blocks), and the off-chip bandwidth. The Design
Weaver shrinks or expands the accelerator structure depending
on the availability of these resources in the target FPGA.
Moreover, the Design Weaver also generates a static execution
schedule for the generated accelerator as state machines and
microcodes. Static scheduling simplifies the hardware and
maximizes its efficiency and performance. DNNWEAVER uses
the proposed ISA to abstract away the accelerator as a virtual
dataflow machine enabling static scheduling and avoiding
the overheads of von Neumann execution (instruction fetch,
decode, etc.). Additionally, as shown in Figure 1, the Design
Weaver also generates the layout of the DNN parameters
(weights) in the memory to streamline off-chip data fetch.
Section 4 discusses the template designs in detail.
3 Integrator. As depicted in Figure 1, the last component

of DNNWEAVER is the Integrator, which adds the memory
interface code to the accelerator code. The Integrator contains
a library of DRAM interfaces and adds the appropriate code for
the target FPGA. After the integration, the final synthesizable
Verilog code can be synthesized on the target FPGA to
accelerate the specified DNN in Caffe format.

3. Instruction Set Architecture Design
DNNWEAVER provides a coarse-grained virtual ISA to (1)
abstract away the details of the accelerator design from the
software; (2) enable layer-specific optimizations; (3) facilitate
portability across different FPGA platforms; and (4) allow
static execution scheduling at compile time. To achieve
these goals, we design a macro dataflow virtual machine for
DNNWEAVER and expose its ISA to the software.

One of the main pillars of any accelerator design is to
alleviate or minimize the von Neumann overhead of the
general-purpose architectures that includes instruction fetch,
decode, etc. To minimize this overhead, we chose a dataflow
architecture as our virtual machine. This dataflow virtual
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Figure 3: Overview of the hierarchical template design. The
template accelerator is clustered and divided into Processing
Units (PUs), comprised of multiple Processing Engines (PEs).

machine does not have explicit registers, which enables
DNNWEAVER to impose significantly fewer restrictions on the
accelerator architecture and allows portability across different
FPGAs. Being an explicit dataflow architecture also allows
DNNWEAVER to perform static optimizations at compile time
and avoid data dependence (e.g., register renaming) at runtime.
Additionally, the coarse grain nature of the ISA enables the
microarchitecture to incorporate layer-specific optimizations
without exposing them through the software stack. Figure 2
shows all the eight instructions of our virtual machine encoded
using 64-bits. All these instructions are variable-sized and
are designed to be able to express and implement a large
variety of deep neural networks. None of the instructions of
this dataflow architecture include source operands. Instead,
a part of instruction opcode encodes the unique static ID of the
destination instruction that will receive the results. To support
this explicit data dependence between instructions, each
instruction in the binary is assigned a unique 24-bit static ID.

The virtual instructions are translated to state machine
and microcodes at compile time. Therefore, we generously
allocated long words to the instructions to increase generality.
All these instructions consume multiple input elements,
perform complex operations, and produce multiple output
elements. Therefore, our virtual machine for DNN acceleration
is a macro dataflow machine. As we discuss in the next section,
the Design Weaver utilizes this virtual ISA to generate the
accelerator code that is best suited for a pair of (DNN, FPGA).

4. Template Accelerator Architecture
The Design Weaver uses hand-optimized predesigned
templates and automatically generates an accelerator that is
best tuned for a given DNN and a target FPGA. The template
designs are highly customizable and scalable, which enables
the Design Weaver to shrink or expand the accelerator based
on the requirements of the DNN and the availability of the
resources in the target FPGA. Generality is another aspect of the
template design. That is, the templates include exchangeable
hardware components that realize different layers of DNNs.
If a DNN does not include a certain layer (e.g., normalization),

the corresponding component is excluded to enhance resource
utilization. Excluding these components can potentially
provide more headroom to the rest of the necessary components
in the accelerator, which can lead to higher performance.
Overall Organization Figure 3 illustrates the template archi-
tecture that provides these necessary characteristics. As
depicted, the template architecture is clustered with two levels
of hierarchy; a collection of self-contained Processing Units
(PUs) that comprise a set of smaller Processing Engines (PEs).
The PEs and the buffers in the template PU architecture provide
compute capabilities for convolution and inner product layers.
The customizable normalization, pooling, and activation
modules provide support for the other possible layers in DNNs.
This clustered architecture provides scalability not only via
modularity but also by making the data traffic local to PUs and
utilizing an untied bussing fabric across them. These features
allow the Design Weaver to generate a concrete accelerator
with any number of PUs and PEs-per-PU. Furthermore, each
hardware module is extensively parameterized. The Design
Weaver tunes these parameters based on the DNN topology,
its layers, and the amount of resources in the FPGA.
Specializing the design for a target FPGA. Each FPGA offers
a certain number of hard blocks including DSP slices (ALUs)
and Block RAMs (on-chip SRAM units, called BRAMs).
Making use of these hard blocks is essential for achieving
reasonably high frequency with FPGAs. Thus, the template
architecture in Figure 3 maps the PU Buffers to the BRAMs and
the ALUs to the DSP slices. The availability of these resources
determines the maximum possible number of PEs and PUs
for a given FPGA. However, the Design Weaver determines
the final composition of the PUs based on the DNN topology
and layers. The composition of the PU is determined based
on the size of the output feature maps produced by the convo-
lution/pooling/normalization/IP layers to maximize resource
utilization and also maximize overall computation throughput.
The next resource is the available off-chip bandwidth which
determines the parameters of the Data Buffer that is connected to
the memory interface as shown in Figure 3. The Design Weaver
performs static data marshaling and determines the layout of the
DNN weights and parameters to streamline transfer parameters
from the memory in contiguous chunks. The Design Weaver
also generates a static schedule for the Data Buffer to fetch and
feed the PUs through the inter-PU bus. Static scheduling avoids
contention on the bus and alleviates the need for PUs to perform
complex handshaking. This approach, in turn, improves the
scalability and efficiency of the template architecture.

5. Evaluation
To evaluate the effectiveness of DNNWEAVER, we use two
off-the-shelf FPGA platforms, Xilinx Zynq ZC702 and Altera
Stratix V GS D5. Table 1 summarizes their specifications.
We investigate the performance and energy benefits of the
generated accelerators compared to a diverse set of high-end
and low-end CPUs and GPUs. For the non-FPGA results, we
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Table 1: FPGA Platforms.

Model Xilinx	Zynq	ZC702 Altera	Stratix	V	SGSD5
53K	LUTs 172K	LUTs

106K	Flip-Flops 690K	Flip-Flops
Peak	Frequency 250	MHz 800	MHz

BRAM 630	KB 5035	KB
MACC	Count 220 1590

Price $129 $6,995
Technology TSMC	28nm TSMC	28nm

FPGA	hardware	platforms

FPGA	Capacity

Table 2: Benchmark DNNs and their input datasets. The
topology column specifies the layers of DNN (C: Convolution,
P: Pooling, I: Inner Product, A: Activation, N: Normalization).
Network Data	set Domain Topology
LeNet MNIST Handwritten	Digit	Recognition C->P->C->P->I->A->I
Siamese MNIST Handwritten	Digit	Recognition C->P->C->P->I->A->I->I
CIFAR-10	Full CIFAR-10 Object	Recognition C->P->A->N->C->A->P->N->C->A->P->I
CifAR-10	Quick CIFAR-10 Object	Recognition C->P->A->C->A->P->C->A->P->I->I
Djinn	ASR Kaldi Speech-to-text	decoder I->A->I->A->I->A->I->A->I->A->I->A->I

Table 3: Evaluated CPUs and GPUs.

ARM	Cortex	A15 4+1 2.3 2	(shared) 5 28 $191
Intel	Xeon	E3-1246	v3	 4 3.6 16 84 22 $290
Tegra	K1	GPU 192 0.852 2	(shared) 5 28 $191
NVIDIA	GTX650Ti	 768 0.928 1 110 28 $150
Tesla	K40 2880 0.875 12 235 28 $5,499

CostPlatform Cores	
Clock	freq	
(GHz)	

Memory	
(GB)	

TDP	
(W)	

Technology
(nm)	

employ Berkeley Caffe. All platforms are benchmarked with
five DNN models. Henceforth, we refer to DNNWEAVER-
generated accelerator for Stratix V and Zynq as DW-Stratix and
DW-Zynq, respectively.
5.1. Methodology

Benchmark DNNs and their Input Datasets. Table 2 shows our
benchmark DNN models and their input datasets. Among
the benchmarks, the LeNet and Siamese networks target the
popular MNIST handwritten digit recognition dataset [16].
The CIFAR-10 networks target object detection in the CIFAR-10
thumbnail dataset [17]. The DjiNN ASR network is a DNN
speech-to-text decoder obtained from the DjiNN and Tonic
benchmark suite [7]. The network definitions for LeNet, Siamese,
and CIFAR-10 are available in Caffe.
Runtime measurements. We compare the execution time of
DNNWEAVER generated accelerators to the execution time on
CPUs and GPUs using Berkeley Caffe. Table 3 lists the five eval-
uated CPUs and GPUs. The CPU and GPU baselines are com-
piled with GCC 4.8 and NVCC 6.5, respectively. We obtain the
baseline timings by using the timing feature of Caffe. Across all
the platforms, we run each DNN 100 times and use the average.
FPGA platforms details. In the Zynq board, the interface
between DRAM and programmable logic is a standard AXI
bus. In the Stratix board, we used Altera’s Avalon interface
IP. We implement a custom controller on the programmable
logic to interface with the AXI and Avalon interfaces on the
two boards and transfer data to and from the main memory. We
synthesize the hardware with 64-bit Vivado v2015.1 for the
Zynq board and Qaurtus II v14.1 for the Stratix board.
Power measurements using vendor libraries. We use the
NVIDIA Management Library (NVML) to obtain the average

power of Tesla K40. Given that GTX650Ti does not support the
NVML library, and since the GTX650Ti and Tesla K40 share
the same microarchitecture, we make a conservative estimation
of the GTX650Ti power by scaling the Tesla K40 measurements
using the two chips’ TDPs. For each DNN, we calculated the
ratio of measured power in Tesla K40 over its TDP. We multiply
this ratio with the GTX650Ti TDP and use 95% of this number.

We use the Intel Running Average Power Limit (RAPL)
energy consumption counters available in the Linux kernel for
power measurements on the Xeon E3.
Power measurements in hardware. The ARM Cortex A15 CPU
and the Tegra K1 GPU are a part of the Jetson TK1 development
board. We use the Keysight E3649A Programmable DC Power
Supply to get the power consumption of the complete Jetson
TK1 board. To do so, we subtract the idle average power 3.12W
from the power reading we obtain during benchmark execution.
Similarly, we make use of a Tektronix 2280 DC Power Supply
to measure the power of Stratix V. Finally, we utilize a GPIO
to USB adapter to read the power directly from the power
controllers in the Zynq board.
5.2. Experimental Results
To investigate the performance gains of the DNNWEAVER-
generated accelerators, DW-Zynq and DW-Stratix, we perform
an extensive comparison with diverse CPU and GPU platforms.
We present these results separately.
Performance comparison with CPUs. Figure 4a illustrates the
performance benefits when DW-Zynq and DW-Stratix are used
to compute the models under evaluation. The performance
of Xeon E3 is used as a baseline for comparison. The average
speedup for a pair of (DW-Zynq, DW-Stratix) is (1.3×, 7.1×);
thus, DW-Stratix provides 5.6× more speedup than DW-Zynq.
Among the evaluated models, Cifar-10 Full sees the highest
speedup of (1.8×, 11.6×) while Djinn ASR shows the lowest
speedup of (0.7×, 3.7×). The significant gap in performance
benefits comes from the disparity in the model topology since
some layers are more favorable to the DNNWEAVER-generated
accelerators than the others. Compared to the low-end ARM
processor, DW-Zynq and DW-Stratix provide 7.6× and 43×
speedup respectively.

These results demonstrate the performance benefits provided
by DNNWEAVER-generated accelerators over both low-end
and high-end CPU platforms, as well as their scalability over
various FPGA platforms.
Performance comparison with GPUs. We compare our acceler-
ators with GPU platforms including GTX650Ti, Tegra K1, and Tesla

K40 in Figure 4b. The baseline is GTX650Ti, a middle-tier GPU.
DW-Zynq provides 0.15× performance compared to GTX650Ti,
while DW-Stratix provides 0.85× performance. The maximum
speedup of (0.16×, 1×) is observed from Cifar-10 Quick, whereas
Djinn ASR shows the minimum speedup of (0.1×, 0.5×). The
low-end GPU, Tegra K1, offers a 0.2× average speedup over the
baseline. In contrast, the high-end GPU, Tesla K40, presents a
2.9× speedup. Compared to Tesla K40, DW-Zynq and DW-Stratix
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Figure 4: Speedup of DNNWEAVER-generated accelerators in comparison to a range of CPU and GPU platforms.

show an average slowdown of 0.05× and 0.3×, respectively.
Performance-per-Watt comparison with CPUs. As shown in
the speedup results, the performance benefits from diverse
CPU, GPU, and FPGA platforms vary substantially. In fact,
these hardware platforms occupy different design points in
the underlying performance vs. energy efficiency tradeoff.
To understand the performance benefits with the fixed energy
efficiency, we measure the power consumption and evaluate
the performance-per-Watt for each hardware platform.

Figure 5a delineates the comparison of performance-per-
Watt for ARM A15, DW-Zynq, and DW-Stratix with the baseline of
Xeon E3. On average, DW-Zynq shows 36× and DW-Stratix shows
20× higher performance-per-Watt than the baseline. Note that
although DW-Stratix provides about 5.6× higher speedup, the
increased power consumption by DW-Stratix (2W vs. 25W)
leads to the lower performance-per-Watt than DW-Zynq. This
trend is observed for all the evaluated DNN models.

Low-end processors such as ARM A15 are commonly used in
mobile devices and are known to have high energy-efficiency.
We also compare the ARM A15 processor with our accelerators
and Xeon E3. The ARM A15 processor shows 2.3× higher
performance-per-Watt compared to Xeon E3. When compared
with ARM A15, the pair of (DW-Zynq, DW-Stratix) shows 15× and
8.7× higher performance-per-Watt, which demonstrates the
energy efficiency of the DNNWEAVER-generated accelerators.
Performance-per-Watt comparison with GPUs. Figure 5b
shows the performance-per-Watt in comparison of Tegra K1,
Tesla K40, DW-Zynq, and DW-Stratix with the baseline, GTX650Ti.
The pair of (DW-Zynq, DW-Stratix) provides (3.6×, 2×) higher
performance-per-Watt than the baseline. Although DW-Stratix
outperforms DW-Zynq with the speedup of 5.6× shown in
Figure 4b, DW-Zynq offers a 1.7× higher performance-per-Watt
compared to DW-Stratix.

On average, Tegra K1 and Tesla K40 have 1.7× and 1.3× higher
performance-per-Watt than GTX650Ti. Even though Tesla K40

provides 2.9× speedup in comparison with Tegra K1 shown in
Figure 4b, Tegra K1 provides 30% higher performance-per-Watt,
which indicates the high energy efficiency of the platform.

6. Related Work
There have been several proposed architectures that accel-
erate machine learning algorithms and DNNs. However,

DNNWEAVER fundamentally differs from these efforts since
it is not just an accelerator, but an accelerator generator.
DNNWEAVER is capable of producing an optimized design
for a given (DNN, FPGA) pair. DNNWEAVER also provides
a novel ISA and macro-dataflow virtual machine to unify
DNN accelerators across different FPGA platforms. Below,
we discuss the most related work in the area of FPGA
implementations and ASIC accelerators for DNNs.
FPGA implementations for DNNs. The work by Chen, et al. [12]
focuses on using an analytical design scheme based on the
roofline model to find the fastest design for a particular DNN
for FPGA acceleration. Their design does not support some
DNN layers such as pooling and normalization – these layers
are supported by DNNWEAVER. The work by Farabet, et
al. [13, 15] develops a specific FPGA accelerator for a specific
DNN. Gokhale, et al. [14] develop a mobile co-processor for
DNNs and evaluate it on a Zynq board. Chakradhar, et al. [18]
develop a VLIW coprocessor for DNNs and emulate it on a
Virtex 5 FPGA. They propose a special switch that allows to
dynamically group the convolution engines in different ways.
The design has a low-level VLIW ISA but the paper does not
include any details about its design. Unlike DNNWEAVER, they
do not generate Verilog code for FPGA accelerators. In a press
release, Microsoft stated they were working on extending the
Catapult platform for deep learning. However, no details about
the design are available for a meaningful comparison [19].

While prior work has explored various individual design
points for accelerating deep learning, our work focuses on
making FPGA accessible to a wide range of DNN developers
by automatically generating an optimized accelerator from
an abstract high level specification for the DNN and the target
FPGA. In addition, these works differ from DNNWEAVER as
they do not generate accelerators, do not provide virtual ISAs
or a virtual machine for DNN accelerators, or do not start from
high level abstractions.
ASIC accelerators for DNNs. (Da)Diannao [10, 11] provides
two low power deep learning ASICs. (Da)Diannao also pro-
vides a low-level fine-grained ISA, but unlike DNNWEAVER,
they do not define a virtual ISA or virtual machine to unify
deep accelerators. Ngyen, et al. [20] propose using Coarse
Grained Reconfigurable Architectures (CGRAs) to implement
neural networks. Qadeer, et al. [21] develop a Convolution
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Figure 5: Performance-per-watt of the DNNWEAVER-generated accelerators in comparison to a range of CPU and GPU platforms.

Engine, which transforms convolution into a map and reduces
operations which can be used for accelerating the convolution
layer of the DNNs. Conti, et al. [22] develop convolution
cores designed to integrate with a shared-memory cluster of
RISC processors. PuDianNao [23] provides a generic ASIC
accelerator that targets machine learning techniques in general,
but excludes deep convolutional networks. These previous
efforts require ASIC design and do not generate accelerators
for FPGA realization, which is the focus of our work.

7. Conclusion
DNNs are compute-intensive workloads that can significantly
benefit from acceleration. This paper, described DNNWEAVER,
aims to close the gap between high-level specification of
DNNs and FPGAs. DNNWEAVER provides a novel virtual
ISA and a macro-dataflow virtual machine to automatically
generate a concrete accelerator from a high-level specification
for a given (DNN, FPGA) pair. While providing automation,
DNNWEAVER delivers high performance and efficiency by
generating the accelerator code from a series of scalable and
customizable hand-optimized template designs. We rigorously
compare the DNNWEAVER generated accelerators to five
different CPUs and GPUs. In comparison, the generated
accelerators deliver significantly superior performance
compared to CPU platforms, and superior efficiency compared
to GPU platforms; without requiring the programmers to
participate in the arduous task of hardware design. These
results suggest that DNNWEAVER takes an effective step in
making FPGAs available to a broader community of DNN
developers who do not often possess hardware expertise.
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