
Appears in the Proceedings of the 43th International Symposium on Computer Architecture, 2016

Towards Statistical Guarantees in
Controlling Quality Tradeoffs for Approximate Acceleration

Divya Mahajan Amir Yazdanbakhsh Jongse Park Bradley Thwaites Hadi Esmaeilzadeh
Alternative Computing Technologies (ACT) Lab

Georgia Institute of Technology
{divya_mahajan, a.yazdanbakhsh, jspark, bthwaites}@gatech.edu hadi@cc.gatech.edu

Abstract—Conventionally, an approximate accelerator replaces
every invocation of a frequently executed region of code without
considering the final quality degradation. However, there is a vast
decision space in which each invocation can either be delegated to
the accelerator—improving performance and efficiency–or run on
the precise core—maintaining quality. In this paper we introduce
MITHRA, a co-designed hardware-software solution, that navigates
these tradeoffs to deliver high performance and efficiency while
lowering the final quality loss. MITHRA seeks to identify whether each
individual accelerator invocation will lead to an undesirable quality
loss and, if so, directs the processor to run the original precise code.

This identification is cast as a binary classification task that
requires a cohesive co-design of hardware and software. The
hardware component performs the classification at runtime and
exposes a knob to the software mechanism to control quality
tradeoffs. The software tunes this knob by solving a statistical
optimization problem that maximizes benefits from approximation
while providing statistical guarantees that final quality level will
be met with high confidence. The software uses this knob to tune
and train the hardware classifiers. We devise two distinct hardware
classifiers, one table-based and one neural network based. To
understand the efficacy of these mechanisms, we compare them
with an ideal, but infeasible design, the oracle. Results show that,
with 95% confidence the table-based design can restrict the final
output quality loss to 5% for 90% of unseen input sets while pro-
viding 2.5× speedup and 2.6× energy efficiency. The neural design
shows similar speedup however, improves the efficiency by 13%.
Compared to the table-based design, the oracle improves speedup
by 26% and efficiency by 36%. These results show that MITHRA

performs within a close range of the oracle and can effectively
navigate the quality tradeoffs in approximate acceleration.

Keywords-Approximate computing, accelerators, quality control,
statistical guarantees, statistical compiler optimization

I. INTRODUCTION

With the effective end of Dennard scaling [1], energy efficiency
fundamentally limits microprocessor performance [2], [3].
As a result, there is a growing interest in specialization and
acceleration, which trade generality for significant gains in
performance and efficiency. Recent work shows three orders of
magnitude improvement in efficiency and speed with Application
Specific ICs [4]. However, designing ASICs for the massive and
rapidly-evolving body of general-purpose applications is currently
impractical. Programmable accelerators [5]–[7] establish a middle
ground that exploit certain characteristics of the application
to achieve performance and efficiency gains at the cost of
generality. Tolerance to approximation is one such application
characteristic. As the growing body of research in approximation
shows, many application domains including web search, machine
learning, multimedia, cyber-physical systems, vision, and speech
recognition can tolerate small errors in computation [8]–[15].
Approximate accelerators exploit this application characteristic by
trading off computational accuracy for higher performance and

better efficiency [16]–[23]. Each invocation of the approximate
accelerator improves performance and efficiency but may also
lower the quality of the final output. The common practice in
approximate acceleration is to always invoke the accelerator
in lieu of a frequently-executed safe-to-approximate region of
code, e.g., a function in a loop. Always invoking the accelerator
provides maximum gains from approximation but can potentially
lead to an unacceptable fixed degree of quality loss. This approach
does not provide the flexibility to explore the tradeoffs between
quality and gains in performance and efficiency.

This paper tackles this shortcoming and defines a cohesively co-
designed hardware-software solution, MITHRA, with components
in both compiler and microarchitecture. MITHRA seeks to identify
whether each individual accelerator invocation will lead to an
undesirable quality loss. If MITHRA speculates that a large quality
degradation is likely, it directs the processor to run the original
precise code. This paper makes the following contributions by
exploring the unique properties, challenges, and tradeoffs in
designing MITHRA and defines solutions that address them.
(1) We find that a relatively low fraction of the accelerator
invocations lead to large errors and need to be excluded from
approximate acceleration. To accomplish the challenging task
of filtering out this small subset and still delivering significant
gains, we introduce MITHRA– a hardware-software co-design–for
controlling the quality tradeoffs. The guiding principle behind
MITHRA is that quality control is a binary classification task that
either determines to invoke the approximate accelerator or the
original precise code for each invocation.
(2) We devise MITHRA, the framework comprising of both hard-
ware and software components. Hardware is devised to perform
the binary classification task at runtime. The hardware also pro-
vides a knob to the software to control the quality tradeoffs. The
software solves a statistical optimization problem to tune the knob.
The solution provides statistical guarantees with a high confidence
that desired quality loss levels will be met on unseen datasets. This
tuned knob is used to pre-train the hardware classifiers.
(3) We evaluate MITHRA using an existing approximate
accelerator [16] on a set of benchmarks with diverse error
behaviors. We compare our designs with an ideal but infeasible
mechanism, referred to as the oracle. The oracle maximizes
the performance and energy benefits by filtering out the fewest
possible accelerator invocations for any level of final quality loss.
We devise two realistic instances of hardware classifiers–table-
based and neural network based– that aim to mimic the behavior
of the oracle. The results show that both of our designs closely
follow the oracle in delivering performance and efficiency gains.

For 5% quality loss, with 95% confidence and 90% success

mailto:divya_mahajan@gatech.edu
mailto:a.yazdanbakhsh@gatech.edu
mailto:jspark@gatech.edu
mailto:bthwaites@gatech.edu
mailto:hadi@cc.gatech.edu

Figure 1: Cumulative distribution function plot of the applications output
error. A point (x,y) implies that y fraction of the output elements see
error less than or equal to x [16].

rate, the table-based design with eight tables each of size
0.5 KB achieves 2.5× average speedup and 2.6× average
energy reduction. The neural design shows similar speedup,
however provides 13% better energy reduction. Compared to
the table-based design, the ideal oracle with prior knowledge
about all invocations achieves only 26% higher speedup and
36% better energy efficiency. Compared to the neural design, the
oracle achieves 26% and 19% higher performance and efficiency
benefits, respectively. These results suggest that MITHRA makes
an effective stride in providing hardware-software solutions for
controlling quality tradeoffs. Such solutions are imperative in
making approximate acceleration widely applicable.

II. CHALLENGES AND OVERVIEW

Approximate accelerators trade small losses in output quality
for significant performance and efficiency gains [16]–[23]. When
a processor core is augmented with an approximate accelerator,
the core delegates the computation of frequently executed safe-to-
approximate functions to the accelerator. A safe-to-approximate
function is a region of code that can tolerate imprecise execution.
Instead of executing the function, the core sends the function’s
inputs to the accelerator and retrieves its outputs. The outputs
from the accelerator are an approximation of the outputs that the
core would have calculated by executing the original function.
The configuration of the accelerator is generated by the compiler.

The accelerator is always invoked in lieu of the original function.
Always invoking the accelerator leads to a fixed tradeoff between
quality and gains in performance and efficiency. The lack of
flexibility in controlling this tradeoff limits the applicability of ap-
proximate acceleration. Therefore, we devise MITHRA, a hardware-
software solution that can effectively control the quality tradeoffs.
A. Challenges and Insights

MITHRA’s objective is to provide flexibility in controlling final
quality loss and to maximize the performance and energy benefits
at any level of quality. MITHRA aims to only filter out those
approximate accelerator invocations that cause relatively large
quality degradation in the final output. To devise such a solution,
we analyze the properties and challenges of a system augmented
with an approximate accelerator. Below we discuss the insights
that guide the design of MITHRA.
1) What accelerator characteristics can guide the design
of MITHRA? We investigate the error distribution in the output

of different applications when they undergo approximate
acceleration [16]. Figure 1 shows the cumulative distribution
function (CDF) plot of final error for each element of the
applications output. The application output is a collection of
elements e.g. image consists of pixels, vector consists of scalars,
etc. As illustrated in the Figure 1, only a small fraction (0%-20%)
of these elements see large errors. The main insight is that there
is an opportunity to attain significant gains with approximate
acceleration while reducing the quality loss. To exploit this
opportunity, MITHRA filters out these small fraction of accelerator
inputs that lead to relatively large errors.
2) What information is needed and is available to segregate
accelerator inputs that cause large error? For each invocation,
the core sends a set of inputs (the input vector) to the accelerator
and retrieves a set of outputs (the output vector). The input
vector here refers to the accelerator input and not the application
input. The accelerator output is the function of its input vector
and its configuration. The difference between the imprecise
accelerator output and the precise output is the accelerator error.
Therefore, accelerator error becomes a function of the input
vector and the accelerator configuration. For a given application,
the accelerator configuration is fixed; making the accelerator error
only a function of the input vector. Accelerator inputs provide
enough information to determine whether or not a specific
accelerator invocation will lead to a relatively large error. This
insight simplifies the design of MITHRA, enabling it to use only
information that is local to each invocation.
3) How to map the final output quality loss as a local
accelerator error? MITHRA uses the accelerator inputs to classify
accelerator invocations that cause large error. Therefore, MITHRA

makes local decisions based on the accelerator input without a
global view of execution and without any knowledge about the
manifestation of the accelerator error on the final output. The main
challenge is to devise a technique that can find an upper bound on
the accelerator error to guide MITHRA’s local decisions while con-
sidering the final output. To address these challenges, we develop
a statistical optimization solver that finds an optimal threshold for
the accelerator error. This threshold maximizes accelerator invo-
cations and gains from approximation while providing statistical
guarantees that the final quality loss level will be met with high
confidence. This mechanism tries to keep the accelerator error be-
low a certain threshold for each invocation. MITHRA considers the
local error large if it speculates that any element in the accelerator
output vector might have an error larger than the threshold. The
threshold forms the knob for controlling the quality tradeoffs.
4) What guarantees are provided for the final output quality
loss? The final output quality is mapped onto the local accelerator
site as the threshold for the accelerator error. The final quality
loss is provided by the programmer requiring either formal or
statistical guarantees. In general, providing formal guarantees that
the quality requirements will be met on all possible application
input datasets is intractable due to the complex behavior of
programs and large space of possible inputs. Statistical approach
is the most viable alternative to validate quality control techniques.

2

Approximate
Program q: quality loss level

β: confidence interval
S: Success rate

Quality
Control
Knob

Training
Data

Core

Classifer

statistical optimization

Instrument Statistical Optimizer

hardware classification

Input
Datasets

Accelerator

training

Data
Collector

Classier
Training

Algorithm

Table Content/
Neural

Topology

Figure 2: Overview of MITHRA comprising a statistical optimizer, a trainer, and a hardware classifier. The statistical optimizer uses instrumented
approximate program and input datasets to tune the quality control knob such that it satisfies a desired quality loss (q) with high confidence (β) and
success rate (S). The knob is used to generate the training data for the classifiers. The classifiers operate at runtime to control the quality tradeoffs.

Therefore, we incorporate the Clopper-Pearson exact method to
provide statistical guarantees that the desired level of quality loss
will be met with high confidence on unseen datasets.
5) What needs to be done for MITHRA in hardware? MITHRA’s
objective is to identify accelerator invocations that lead to a
relatively large quality loss or an error above the threshold.
Measuring the error requires running both the original precise
code and invoking the accelerator, which will nullify the benefits
of acceleration. MITHRA makes this decision without measuring
the actual error of the accelerator. This decision making can be
accomplished by using a classification algorithm that maps the
accelerator inputs to a binary decision. The main challenge is to
devise classifiers that can be efficiently implemented in hardware
and make quality tradeoff decisions at runtime.
B. Overview

MITHRA’s framework, shown in Figure 2, comprises (1) a
compiler constituting statistical optimizer and pre-trainer, and
(2) a hardware classifier which is a microarchitectural mechanism
that resides between the core and the accelerator. The hardware
classifier uses the accelerator inputs to make a binary decision of
either running the original function on the core or invoking the
accelerator. In this paper, we propose and explore two classifica-
tion algorithms that can be implemented as the microarchitectural
instances of MITHRA. The first algorithm is a novel table-based
mechanism that efficiently hashes the accelerator input vector to
retrieve the decision from a small ensemble of tables. The second
technique is a multi-layer perceptron based neural mechanism.
Section IV describes these two hardware classifiers.

The hardware classifiers need to be trained in order to make
decisions at runtime. The compilation component of MITHRA

trains these classifiers to detect accelerator inputs that might
produce accelerator error greater than a threshold. This threshold
is the quality control knob that is tightened or loosened in
accordance to the desired level of final output quality. Optimal
threshold is obtained by solving a statistical optimization problem
that maximizes accelerator invocation rate and benefits from
approximate acceleration for a set of representative application
input datasets while keeping the quality loss below a desired level.
The optimization provides statistical guarantees that final quality
loss will be met with high confidence and success rate. The thresh-
olding mechanism and pre-training is described in Section III.

III. STATISTICAL
OPTIMIZATION FOR CONTROLLING QUALITY TRADEOFFS

Approximate accelerators require the programmer to provide
an application-specific quality metric and a set of representative
input datasets [16]–[23]. MITHRA uses the same information to
automatically train the classifiers. This training process constitutes
two phases. The first phase, referred to as the thresholding phase
utilizes profiling information to find a threshold for the accelerator
error. This phase converts the global quality loss into a local accel-
erator error threshold by solving a statistical optimization problem.

The second phase or the training phase, generates training
information for the hardware classifiers based on the threshold
found in the first phase (Section III-B). This training information
is incorporated in the accelerator configuration and is loaded in
the classifiers when the program is loaded to the memory for
execution. This strategy is commensurate with previous works on
acceleration (precise or approximate) that generate the accelerator
configuration at compilation time and encode it in the binary [6],
[7], [16]–[18]. The configurations of both the accelerator and
MITHRA are part of the architectural state. Therefore, the operating
system must save and restore the configuration data for both the
accelerator and MITHRA on a context switch. To reduce context
switch overheads, the OS can use the same lazy context switch
techniques that are typically used with floating point units [24].
A. Finding the Threshold

The objective of this phase is to tune the quality control knob i.e.
find a threshold for the accelerator error. The threshold enables
MITHRA to maximize the accelerator invocations for any level
of quality loss. The optimized threshold is an upper bound on
the error that can be tolerated by the target function from the
accelerator to maintain the desired final output quality. To allow
an accelerator invocation, the error of each element of the output
vector should be below the threshold (th), as shown in Equation 1.

∀oi∈OutputVector |oi(precise)−oi(approximate)|≤th (1)

Algorithm 1 shows the iterative procedure to find this optimized
threshold. In this process, for each intermediate threshold (th), the
program (P) can be instrumented to find the final quality loss (qi)
for a set of representative application input datasets (i). Each final
quality loss level (qi) is compared with the desired final quality
loss(q). Due to the complex behavior of programs and the large
space of possible datasets, some application inputs might fall
within the desired final quality loss, while the others might not.
Hence, providing formal guarantees that quality requirements will
be met on all possible application inputs is intractable. Statistical

3

approaches are the most viable solutions to validate quality control
techniques. Therefore, MITHRA provides statistical guarantees that
quality requirements will be met on unseen datasets with high
confidence. To provide such guarantees, the algorithm counts the
application input datasets that have final output quality (qi) below
or equal to the desired quality loss (q) as shown in Equation 2.

∀i∈ inputSet i f (qi(Pi(th))≤q) nsuccess=nsuccess+1 (2)

The number of application outputs that have desired quality
loss (nsuccess) varies with the threshold (th). For instance, as the
threshold is made tighter the number of nsuccess will increase as
the output quality loss of each application input (qi) will decrease.
We utilize the nsuccess to compute the binomial proportion
confidence interval and success rate using Clopper-Pearson exact
method [25] as described below.
Clopper-Pearson exact method. As Equation 3 shows,
the Clopper-Pearson exact method computes the one-sided
confidence interval of success rate S(q), when the number of
application inputs or sample trials, ntrials, and the number of
successes among the trials, nsuccess, are measured for a sample
of the population. In Equation 3, F is the F-critical value that is
calculated based on the F-distribution [26].

1

1+ ntrials−nsuccess+1
nsuccess·F[1−β ;2·nsuccess,2·(ntrials−nsuccess+1)]

<S(q) (3)

To further understand Equation 3 and the S(q), we discuss a
simple example in which, 90 (nsuccess) out of the total 100 (ntrials)
representative application input datasets generate outputs that have
a final quality loss≤ 2.5%. In this example, the lower limit of the
95% confidence interval (S97.5%) is 80.7%. This implies that with
95% confidence we can project that at least 80.7% of unseen input
sets will produce outputs that have quality loss level within 2.5%.
This projection is conservative because the Clopper-Pearson exact
method calculates a conservative lower bound for the confidence
interval. The degree of confidence (β) is the probability of the
projection being true. The projection based on 95% confidence
interval is true with probability of 0.95. The statistical optimization
algorithm incorporates this Clopper-Pearson exact method. The
optimization iteratively searches for an optimal threshold that max-
imizes accelerator invocations while providing high confidence
that final quality loss will be met on unseen datasets.

The inputs to the algorithm are the program code (P), set
of representative input datasets (ρ), quality degradation when
accelerator is always invoked (D), desired quality loss level
(q), confidence interval (β) and desired success rate (S). The
algorithm goes through following steps:
(1) Initialize. Assign a random value to the threshold.
(2) Instrument. Instrument the program to execute both the
original function and the accelerator for all invocations of the
target function. For each invocation, use the original precise result
if the accelerator error exceeds the threshold.
(3) Measure the quality. Run the instrumented program for each
application input and measure the final output quality.
(4) Measure the success rate. Calculate the number of inputs

that have the final output quality within the desired level (q). Use
this number and confidence interval to calculate the success rate
(θ) with the Clopper-Pearson exact method.
(5) Adjust the threshold. If the success rate (θ) is less than S,
decrease the threshold by a small delta. If the success rate (θ)
is greater than S, increase the threshold by a small delta.
(6) Reiterate or terminate. Terminate if success rate (θ) with
the last threshold is greater than S and with the current threshold
is less than S. Otherwise, go to step (2).

As Section V elaborates, we use a different set of input datasets
to validate the selection of the threshold. If the application offloads
multiple functions to the accelerator, this algorithm can be ex-
tended to greedily find a tuple of thresholds. Due to the complexity
of application behavior, this greedy approach will find suboptimal
thresholds if the number of offloaded functions increases. After
finding the threshold, the compiler profiles application input
datasets to generate the training data for the classifiers.

Input :P: Program
ρ: Input data sets
D: Quality loss with 100% accelerator invocation
q: Desired quality loss level
β : Confidence interval
S: Desired success rate

Function SuccessRate (q, P, ρ, β , th)
Initialize num← 0
for (∀ ρi in ρ) do

Pi = Instrument (P)
error = RunMeasureQuality (Pi, ρi, th)
if (error < q) then

num=num+1;
end
ClopperPearson (num, β , ρ)
return num

end
Initialize th← th0
θ = SuccessRate (q, P, ρ, β , th)
terminate = false
while (terminate == false) do

if (θ < S) then
th = th - ∆

else if (θ > S) then
thlast = th
th = th + ∆

θlast = θ

θ = SuccessRate (q, P, ρ, β , th)
if (θ < S and θlast > S) then

terminate = true
return thlast

end
Algorithm 1: Finding the threshold.

B. Training Data for Hardware Classifiers
Once the threshold is determined, hardware classifiers can be

pre-trained using representative application inputs. Generating
training data requires running the application and randomly
sampling the accelerator error. For the sampled invocations, if the
accelerator error for all elements in the output vector are less than
the threshold, the corresponding input is mapped to invoke the
accelerator (binary decision ‘0’). Conversely, the input vector is
mapped to trigger the execution of the original function (binary de-
cision ‘1’) if the accelerator error is greater than the threshold. The
training data is a collection of tuples. Each tuple contains an input
vector and a binary value. The binary value is 0 if the accelerator
error is larger than the threshold and 1 otherwise. For a given input

4

bit[28]

Index[0]

Input FIFO

bit[31] bit[0]bit[3]

Index[1]Index[7]Hash:

Configuration
1 0 1 10

Figure 3: A reconfigurable hash function. Each hash function takes an
input vector and generates the index. All the hashes are MISRs but the
configuration register decides the input bits they use.

vector, this binary value is the function of accelerator configuration
and the threshold. Both the configuration and the threshold are
constant for a fixed application and final quality loss. Therefore, a
set of representative accelerator input vectors is sufficient to gener-
ate the training data. In many cases, a small number of application
input datasets is sufficient to generate this training data for classi-
fiers because the target function is hot and is executed frequently
in a single application run. For instance, in an image processing
application, the target function runs for every pixel in the input
image. Even a single 512×512 input image provides 262,144
training data points. The generated training data is agnostic to the
type of hardware classifier that needs to be trained. However, the
training process depends on classifier. In this paper, we focus on a
table-based and neural network based classifier. These classifiers
and their training process is detailed in the next section.

IV. DESIGNING HARDWARE CLASSIFIERS FOR MITHRA
This section provides details about how hardware classifiers

of MITHRA are designed to be deployed at runtime. MITHRA’s
microarchitectural component is a hardware classifier that maps
an accelerator input vector with multiple elements to a single-bit
binary decision. This binary decision determines whether MITHRA

would invoke the accelerator or run the original precise function.
This section defines and explores two hardware classifiers for
MITHRA, one table-based and one based on neural networks. The
table-based classifier mostly utilizes storage for decision making,
whereas the neural classifier relies on arithmetic operations.
A. Table-Based Classifier Design

We devise a novel table-based classifier that stores its decisions
(single-bit values) in a table, which are indexed by a hash over the
elements of the accelerator input vector. We design an efficient
circuit to hash the input elements and generate the index aiming
to minimize aliasing. Below, we first discuss the hash function
and then describe a multi-table design that leverages a small
ensemble of tables to achieve better accuracy with limited storage.

1) Generating Index from Multiple Inputs: For the table-based
design, the hash function should (1) be able to combine all the ele-
ments in the input vector, (2) be able to reduce destructive aliasing
as much as possible, (3) be efficiently implementable in hardware,
(4) be able to accept a varying number of inputs, and, (5) be recon-
figurable to work across different applications. To efficiently sat-

precise

Input Vector

0
1
1
1
0
0
1
0

Hash1
1
1
0
0
1
1
1
1

Hash2
1
1
0
0
0
0
1
0

HashN
f f f

Figure 4: Multi-table based Classifier. All tables are equally sized but
each table is indexed with a different MISR or hash configuration.

isfy these requirements, we use a hardware structure called Multi-
Input Signature Register (MISR) [27] to hash the input elements
and generate the table index. A MISR takes in a bit-vector and
uses a set of XOR gates to combine the incoming bit-vector with
the content of a shift register. Figure 3 illustrates an instance of our
MISR hash function. In a MISR, the result of the XORs is stored
in a register after a shift operation. As the next input comes in, the
MISR repeats the previous step of combining the inputs together.
After all the elements of the input vector for a single invocation
are processed, the value that remains in the register is the index.

Number of elements in the accelerator input vector vary across
applications. Therefore, the hash function should be able to
accept a varying number of inputs. MISRs can naturally combine
arbitrary number of input elements. As Figure 3 illustrates,
we designed a reconfigurable MISR that supports different
combinations of XOR, bit selection, and shift operations to
allow the table-based classifier to adapt to the needs of the
application. This configuration is decided at compile time for
each application and is fixed during execution. The fixed hashing
for each application makes the indexing completely deterministic.

One of the challenges with using MISRs to index the tables
is that its content changes as the input elements arrive. These
transient changes in the index of the tables can cause high energy
consumption. Therefore, we connect the MISRs through a series
of tri-state gates to the tables. The tri-state gates are inactive
until the arrival of the last input element, to prevent the transient
state of the MISRs from affecting the table. A counter counts the
number of received input elements and activates the tri-state gates
when the last element arrives. We send accelerator inputs to both
the accelerator and the classifier simultaneously assuming that in
most cases the classifier will decide to invoke the accelerator. This
strategy is in line with the earlier insight that only a small fraction
of the invocations require invoking the original precise code.

2) Multi-Table Classifier: A single-table requires a large
number of entries to maximize the benefits of approximate
acceleration while reducing quality loss. The reason being that
only a small fraction of the input combinations need to be filtered
out from accelerator invocation. This characteristic makes it
harder for only one small table to segregate inputs that cause
relatively large errors because of destructive aliasing. When
aliasing occurs and multiple inputs collide on the same entry,
the bias is always toward invoking the accelerator. This bias may
impair the ability of the smaller tables to distinguish the inputs,
thereby causing relatively large quality losses.

To address this issue, we devise a multi-table classifier il-
lustrated in Figure 4. The design consists of multiple equally-

5

in0
in1

in7
in8

...

Input Layer Hidden Layer Output Layer

‘0’
‘1’

Figure 5: The neural classifier takes in accelerator inputs and generates
two outputs. The output neuron with the larger value is the final outcome.

sized tables and each entry in the table is a single-bit value. The
hash function for each table is a different MISR configuration.
These configurations are selected from a pool of 16 fixed MISR
configurations that exhibit least similarity i.e. they map same input
to different table indices. This configuration pool is independent
of the application. The compiler assigns the first table with the
MISR configuration that incurs least aliasing. The second table is
assigned a different MISR that has least amount of aliasing and the
combination of the two tables provides least false decisions. The
compiler repeats this step for the third, fourth, etc., tables. We de-
veloped this greedy algorithm since the decision space is exponen-
tially large. Using different hash functions for each table lowers
the probability of destructive aliasing in the tables. As the input ele-
ments arrive, all the MISRs generate indices in parallel and the cor-
responding values are read from the tables. Since the bias in each
single table is toward invoking the accelerator, MITHRA directs the
core to run the original function even if a single table determines
that the precise code should be executed. Therefore, the logic for
combining the result of the tables is just an OR gate. The multi-
table design is similar to Boosting in machine learning that com-
bines an ensemble of weak learners to build a powerful classifier.
B. Neural Classifier Design

We also explore the use of neural networks to control the
quality tradeoffs. While the table-based design utilizes storage
for controlling the quality tradeoffs, the neural design leverages
arithmetic operations for the same task. The neural classifier
spends some of the gains achieved in performance and efficiency
to obtain a higher quality in the results.

We use multi-layer perceptrons (MLPs) due to their broad
applicability. An MLP consists of a fully-connected set of neurons
organized into layers: the input layer, any number of hidden
layers, and the output layer (Figure 5). A larger, more complex
network offers greater accuracy, but is likely to be slower and
dissipate more energy. To strike a balance between accuracy
and efficiency, we limit neural design to three layer networks
comprising one input layer, one hidden layer, and one output
layer. Furthermore, we only consider neural networks with 2,
4, 8, 16, and 32 neurons in the hidden layer even though more
neurons-per-layer are possible. The neural classifier takes in the
same number of inputs as the accelerator and always contains two
neurons in the output layer. One neuron represents the output ‘0’
and the other represent the output ‘1’. The output neuron with the
larger value determines the final decision. We train [28] these five
topologies and choose the one that provides the highest accuracy
with the fewest neurons. During an invocation, as the core sends
the input elements to neural network, which is executed on a
specialized hardware and decides whether or not to invoke the

accelerator. The next subsection describes how these hardware
classifiers are trained using the threshold specific training data.
C. Training the Classifiers

Table-based classifier is pre-trained offline. At runtime the table-
based design is updated as we discuss later in this section. Up-
dating the neural design online requires more computation power
and may incur significant overheads. Therefore, for the neural
design we follow the same workflow as the neural processing units
(NPUs) [16]–[18], [22], [23] and train the neural network offline.

1) Training the Table-Based Classifier: The offline training
of the table-based design initially sets all the table entries to
‘0’ enabling a 100% accelerator invocation. For each training
tuple, we calculate the hash for each accelerator input vector to
identify its corresponding table entry. If a particular accelerator
input vector leads to an error larger than the threshold, the
corresponding table entry is set to ‘1’. In the case of aliasing,
the table entry will be set to ‘1’ even if only one of the aliased
inputs results in an error larger than the threshold. This training
strategy is conservative and avoids the bias towards invoking
the accelerator since most of the accelerator inputs lead to
small errors. The same procedure is extrapolated to train the
ensemble of tables. After pre-training, we compress the content
of these tables using the Base-Delta-Immediate compression
algorithm [29] and encode the compressed values in the binary.
Online training for the table-based design. After deploying the
pre-trained table-based design, we use the runtime information
to further improve its accuracy. We sample the accelerator error
by running both the original precise code and the accelerator
at sporadic intervals. After sampling the error, the table entry
is updated according to the same procedure used in pre-training.
In addition to generating the hash and updating the table entries,
the online table update requires a few arithmetic operations to
calculate the error and compare it with the threshold.

2) Training the Neural Network Design: Similar to the
prior works [16]–[18], [22], [23], we use offline training the
neural classifier. An alternative design could train the neural
design concurrently with in-vivo operation. Online training could
improve accuracy but would result in runtime overheads. To
mitigate these overheads, an online training system could offload
neural training to a remote server on the cloud.
D. Instruction Set Architecture Support

We add a special branch instruction to the ISA that invokes the
original code if MITHRA decides to fall back to the precise code.
Hence, the branch is taken if the hardware classifier speculates
that the original precise function should be executed. This special
branch instruction is inserted after the instructions that send
the inputs to the accelerator. The overhead of this instruction is
modeled in our evaluations.

V. EVALUATION

A. Experimental Setup
Cycle-accurate simulation. We use the MARSSx86 x86-64 cycle-
accurate simulator [30] to measure the performance of the accel-
erated system augmented with MITHRA. The processor is modeled

6

Table I: Benchmarks, their quality metric, input data sets, and the initial quality loss when the accelerator is invoked all the time.

Benchmark Description Type Application
Error Metric Input Data Compilation

Dataset
Validation

Dataset NPU Topology Error with Full
Approximation

blackscholes Math model of a financial market Financial Analysis Avg. Relative Error 4096 Data Point from PARSEC Suite 250 Distinct 250 Distinct 6->8->8->1 6.03%

fft Radix-2 Cooley-Tukey fast fourier Signal Processing Avg. Relative Error 2048 Floating Point Numbers 250 Distinct 250 Distinct 1->4->4->2 7.22%

inversek2j Inverse kinematics for 2-joint arm Robotics Avg. Relative Error 10000 (x, y) Coordinates 250 Distinct 250 Distinct 2->8->2 7.50%

jmeint Triangle intersection detection 3D Gaming Miss Rate 10000 Pairs of 3D Triangle Coordinates 250 Distinct 250 Distinct 18->32->8->2 17.69%

jpeg JPEG encoding Compression Image Diff 512x512-Pixel Color Image 250 Distinct 250 Distinct 64->16->64 7.00%

sobel Sobel edge detector Image Processing Image Diff 512x512-Pixel Color Image 250 Distinct 250 Distinct 9->8->1 9.96%

after a single-core Intel Nehalem to evaluate the performance
benefits over an aggressive out-of-order architecture1. We use
NPU [16] as the approximate accelerator to evaluate MITHRA.
The NPU consists of eight processing elements that expose three
queues to the processor to communicate inputs, outputs, and
configurations. The simulator is modified to include ISA-level sup-
port for the NPU2. This support consists of two enqueue and two
dequeue instructions and a special branch instruction for executing
the original function. The processor uses the same architectural in-
terface and FIFOs to communicate the configuration of classifiers.
Classifiers receive the inputs as the processor enqueues them in the
accelerator FIFO. We use GCC v4.7.3 with -O3 to enable compiler
optimization. The baseline in our experiments is the benchmark
run solely on the processor with no approximate acceleration.

We augmented MARSSx86 with a cycle-accurate NPU simulator
that also models the overheads of hardware classifiers. For the
table-based mechanism, these overheads include, cycles to decom-
press the content, generate the indices, index into the table, and
finally generate the decision. We use the NPU to execute the neural
design which adds extra cycles and energy to the overall system.
Energy modeling. We use McPAT [31] for processor energy
estimations. We model the NPU energy using results from McPAT,
CACTI 6.5 [32], and [33]. The cycle-accurate NPU simulator
provides detailed statistics that we use to estimate the energy
of both the accelerator and the neural classifier. For estimating
the energy of the table-based design, we implement the MISRs
in Verilog and synthesize them using Synopsys Design Compiler
(G-2012.06-SP5). We use Synopsys PrimeTime (F-2011.06-SP3-2)
to measure the energy cost of the MISRs after synthesis. The
synthesis library is the NanGate 45 nm Open Cell Library–an open
source standard cell library. We also use the same synthesis
procedure to measure the cost of arithmetic operations that
are required to decompress the content in each table. We use
CACTI 6.5 to measure the energy cost of accessing the tables.
The processor, hardware classifier, and the accelerator operate

1Processor: Fetch/Issue Width: 4/6, INT-ALUs/FPUs: 3/2, Load/Store FUs: 2/2,
ROB Size: 128, Issue Queue Size: 36, INT/FP Physical Registers: 256/256,
Branch Predictor: Tournament 48KB, BTB Sets/Ways: 1024/4, RAS Entries:
64, Load/Store Queue Entries: 48/48, Dependence Predictor: 4096 Bloom Filter,
ITLB/DTLB Entries: 128/256 L1: 32KB Instruction, 32KB Data, Line Width:
64bytes, 8-Way, Latency: 3 cycles L2: 2MB, Line Width: 64bytes, 8-Way,
Latency: 12 cycles Memory Latency: 50 ns

2NPU: Number of PEs: 8, Bus Schedule FIFO: 512x20-bit, Input FIFO:
128x32-bit, Output FIFO: 128x32-bit, Config FIFO: 8x32-bit NPU PE: Weight
Cache: 512x33-bit, Input FIFO: 8x32-bit, Output Reg File: 8x32-bit, Sigmoid
LUT: 2048x32-bit, Multiply-Add Unit: 32-bit Single-Precision FP

Table II: Size of compressed table-based and neural classifiers.

Size (KB) Neural Topology
blackscholes 0.25 0.57 6->4->2

fft 0.25 0.10 1->4->2

inversek2j 0.29 0.10 2->4->2

jmeint 0.25 1.47 18->16->2

jpeg 3.70 0.79 64->2->2

sobel 3.20 0.22 9->4->2

Benchmark Size of Table-based Design
after Compression (KB)

Neural-base Design

at 2080 MHz at 0.9 V and are modeled at 45 nm technology node.
These settings are in line with the energy results in [33] and [16].
Classifier configurations. For the main results in this section,
we use a table-based design that consists of eight tables, each
of size 0.5 KB. This design is the result of our Pareto analysis,
presented in Section V-B2. The topology of the neural classifier
varies across benchmarks (Table II).
Benchmarks. We use AxBench, a publicly available benchmark
suite (http://www.axbench.org) that is used in [16], [17]. These
benchmarks come with NPU topology and we use them without
making any NPU-specific optimizations for utilizing MITHRA.
These benchmarks represent a diverse set of application domains,
including financial analysis, signal processing, robotics, 3D
gaming, compression, and image processing. Table I summarizes
each benchmark’s application domain, input data, NPU topology,
and final application error levels when the accelerator is invoked
for all inputs without MITHRA. We use each benchmark’s
application-specific error metric to evaluate MITHRA. The initial
error with no quality control and full approximation ranges from
6.03% to 17.69%. This relatively low initial error makes the quality
control more challenging and the diversity of the application error
behavior provides an appropriate ground for understanding the
tradeoffs in controlling quality with MITHRA.
Input datasets. We use 250 distinct datasets during compilation
to find the threshold and train MITHRA. We use 250 different
unseen datasets for validation and final evaluations that are
reported in this section. Each dataset is a separate typical program
input, such as a complete image (see Table I).
B. Experimental Results

In this paper, we devise an optimized hardware for the
table-based and neural based classifiers, and provide the necessary
microarchitectural support. The table-based and neural based
designs can also be implemented in software. To justify the
hardware implementation of these classifiers we implement these
algorithms in software and measure the corresponding application

7

http://www.axbench.org

0.0% 2.5% 5.0% 7.5% 10.0%

Application Quality Loss

0×

1×

2×

3×

4×

5×

S
pe

ed
up

Oracle
Table-based
Neural

(a) Speedup vs Application Quality Loss

0.0% 2.5% 5.0% 7.5% 10.0%

Application Quality Loss

0×
1×
2×
3×
4×
5×
6×

E
ne

rg
y

R
ed

uc
tio

n

Oracle
Table-based
Neural

(b) Energy Reduction vs Application Quality Loss

0.0% 2.5% 5.0% 7.5% 10.0%

Application Quality Loss

0%

20%

40%

60%

80%

100%

In
vo

ca
tio

n
R

at
e

Oracle
Table-based
Neural

(c) Invocation Rate vs Application Quality Loss
Figure 6: We compare the mean (a) speedup, (b) energy reduction and (c) invocation rate across all the benchmarks for the oracle, table-based and
neural designs for varying levels of final application output quality loss for 95% confidence interval and 90% success rate.

runtimes. The software implementation of the table-based and
neural classifiers slow the average execution time by 2.9× and
9.6×, respectively. These results confirm the necessity of a
co-designed hardware-software solution for quality control.

1) Controlling Quality Tradeoffs with MITHRA: The primary
goal of MITHRA is to control quality tradeoffs while preserving
maximum benefits from approximate acceleration. We build an
ideal oracle design as a gold standard to measure the efficacy
of our realistic designs At any level of quality loss, the oracle
always achieves the maximum performance and energy benefits
by only filtering out the invocations that produce an accelerator
error larger than the threshold. Therefore, MITHRA’s objective can
be redefined as a design that closely mimics the achievements
of the oracle in delivering speedup and energy reduction.
Performance and energy benefits. Figure 6a and Figure 6b
shows the speedup and energy reduction when the quality
tradeoffs are controlled by the oracle, the table-based design,
and the neural design. These speedups and energy reductions are
the geometric mean across all the benchmarks. We present the
per-benchmark trends in Figure 8, and discuss them below. All
the numbers in Figures 6b, 6a are presented for 90% success rate
and 95% confidence interval. This result implies that with 95%
confidence, we can project that at least 90% of unseen input sets
will produce outputs that have quality loss level within the desired
level. To obtain these results, 235 (out of 250) of the test input
sets produced outputs that had the desired quality loss level. As
expected, the oracle delivers the highest benefits. The table-based
design and the neural design both closely follow the oracle. These
results show the efficacy of both our designs in controlling the
quality tradeoffs. With 5% final output quality loss, the table-based
design provides 2.5× average speedup and 2.6× average energy
reduction. In comparison to the table-based design, the neural
design yields similar performance benefits while providing 13%
more energy gains. Compared to the table-based design, the oracle
achieves 26% more performance and 36% more energy benefits.
Similarly, compared to the neural design, the oracle delivers 26%
more speedup and 19% more energy reduction. These results sug-
gest that both classifier designs can effectively control the tradeoff
between quality and the gains from approximate acceleration.
Accelerator invocation rate. To better understand the trends in
performance and energy reduction, we examine the accelerator
invocation rate with MITHRA in Figure 6c. The invocation rate is
the percentage of target function invocations that are delegated

2.5% 5.0% 7.5% 10.0%

Application Quality Loss

0%

20%

40%

60%

80%

100%

%
of

Fa
ls

e
D

ec
is

io
ns False Negative–Table-based

False Positive–Table-based

(a) False Positives and False Negatives (Table Design)

2.5% 5.0% 7.5% 10.0%

Application Quality Loss

0%

20%

40%

60%

80%

100%

%
of

Fa
ls

e
D

ec
is

io
ns False Negative–Neural
False Positive–Neural

(b) False Positives and False Negatives (Neural Design)
Figure 7: False positive and false negative decisions for (a) table-based
and (b) neural classifier for varying quality losses at 95% confidence
interval and 90% success rate.

to the accelerator. When the invocation rate is 100%, the target
function is always executed on the accelerator. When the
invocation rate is 0%, the function always runs on the precise core.
Gains from approximate acceleration are directly proportional to
invocation rate and MITHRA aims to maximize these gains for any
level of quality loss. Figure 6c shows the invocation rate when
the quality tradeoffs are controlled by the oracle, the table-based,
and the neural design. As expected, the oracle provides the
highest invocation rate due to its prior knowledge about all
the invocations. The table-based and the neural designs obtain
invocation rates that closely follow the oracle. As the quality loss
level tightens, the invocation rate declines for all the three designs.
For 5% quality loss level, the table-based design achieves 64%
and the neural design achieves 73% average invocation rate. The
oracle is only 29% and 13% higher than the table-based and neural
designs, respectively. Even though the table-based design shows
a lower invocation rate than the neural design, the performance
achieved by both the designs are similar since the neural design
generally incurs a higher cost for generating the result.
Per-benchmark analysis. Figure 8 illustrates the speedup, energy

8

bl
ac

ks
ch

ol
es

fft
Speedup Energy Reduction Invocation Rate

in
ve

rs
ek

jm
ei

nt
jp

eg
so

be
l

Oracle Table-based Neural

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0⇥
5⇥

10⇥
15⇥
20⇥
25⇥
30⇥
35⇥
40⇥

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0%

20%

40%

60%

80%

100%

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0.0⇥
0.5⇥
1.0⇥
1.5⇥
2.0⇥
2.5⇥
3.0⇥
3.5⇥
4.0⇥

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0⇥

5⇥

10⇥

15⇥

20⇥

25⇥

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0.0⇥
0.5⇥
1.0⇥
1.5⇥
2.0⇥
2.5⇥
3.0⇥
3.5⇥

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0%

20%

40%

60%

80%

100%

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0⇥

2⇥

4⇥

6⇥

8⇥

10⇥

12⇥

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0⇥

5⇥

10⇥

15⇥

20⇥

25⇥

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0%

20%

40%

60%

80%

100%

0.0% 2.5% 5.0% 7.5% 10.0% 12.5% 15.0% 17.5% 20.0%
Application Quality Loss

0%

20%

40%

60%

80%

100%

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0.0⇥

0.5⇥

1.0⇥

1.5⇥

2.0⇥

0.0% 2.5% 5.0% 7.5% 10.0% 12.5% 15.0% 17.5% 20.0%
Application Quality Loss

0.0⇥

0.5⇥

1.0⇥

1.5⇥

2.0⇥

0.0% 2.5% 5.0% 7.5% 10.0% 12.5% 15.0% 17.5% 20.0%
Application Quality Loss

0.0⇥

0.5⇥

1.0⇥

1.5⇥

2.0⇥

2.5⇥

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0.0⇥

0.5⇥

1.0⇥

1.5⇥

2.0⇥

2.5⇥

0.0% 2.5% 5.0% 7.5%
Application Quality Loss

0%

20%

40%

60%

80%

100%

0.0% 2.5% 5.0% 7.5% 10.0%
Application Quality Loss

0.0⇥

0.5⇥

1.0⇥

1.5⇥

2.0⇥

2.5⇥

0.0% 2.5% 5.0% 7.5% 10.0%
Application Quality Loss

0.0⇥

0.5⇥

1.0⇥

1.5⇥

2.0⇥

0.0% 2.5% 5.0% 7.5% 10.0%
Application Quality Loss

0%

20%

40%

60%

80%

100%

Figure 8: Speedup, energy reduction, and invocation rate for individual benchmarks at 95% confidence interval and 90% success rate.

reduction, and invocation rate for each individual benchmark with
95% confidence and 90% success rate with varying desired quality
levels. Similar to the mean results, the majority of benchmarks
closely follow the oracle for both the designs. Two benchmarks,
jmeint and jpeg, reveal interesting trends. In both cases, the neural
design significantly outperforms the table-based design in terms of
invocation rate. This phenomenon is the result of large number of
elements in the accelerator input vector (64 inputs for jpeg and 18

inputs for jmeint). This leads to high hash conflicts and hence the
table-based design is less effective in segregating inputs that incur
large quality losses. Therefore, it conservatively falls back to the
original precise code to achieve better quality. Another observation
is that even though jmeint achieves higher invocation rate with the
neural design, the gains from approximation are similar to the
table-based design. The neural design for jmeint requires a rela-
tively large neural network with 18 input, 16 hidden, and 2 output

9

0.8⇥
0.9⇥
1.0⇥
1.1⇥
1.2⇥
1.3⇥
1.4⇥
1.5⇥
1.6⇥

S
pe

ed
up

blackscholes fft inversek2j jmeint jpeg sobel geomean

2.
1

2.
0

2.
0

Table-based
Neural

Random
Filtering

(a) Speedup with MITHRA (Baseline: Random Filtering)

Random
Filtering

0.8⇥

1.0⇥

1.2⇥

1.4⇥

1.6⇥

1.8⇥

E
ne

rg
y

R
ed

uc
tio

n

blackscholes fft inversek2j jmeint jpeg sobel geomean

2.
5

2.
9

2.
8

Table-based
Neural

(b) Energy Reduction with MITHRA (Baseline: Random Filtering)
Figure 9: (a) Speedup and (b) energy reduction for 95% confidence
interval and 90% success rate compared to random filtering at 5% quality
loss. The baseline is approximate acceleration with random filtering.

neurons that outweighs the benefits of higher invocation rate.
False positives and false negatives. To further understand the
operation of our classifiers, we examine their false decisions.
Figure 7a and 7b shows the percentage of these false decisions
(positive and negative) for the table-based and the neural design,
respectively. The false positives comprise the input cases that
should have been run on the accelerator according to the oracle,
but are identified as potential high-error cases by classifiers and are
executed using the original precise function. Conversely, the false
negatives comprise those input cases, which should have been run
using the original function according to the oracle but are missed
by classifiers and are run on the accelerator. Figure 7 shows the
ratio of the false decisions to the total invocations averaged over all
benchmarks. With 5% quality loss, the table-based design makes
22% false positive and 5% false negative decisions. The neural
design makes 18% false positive and 9% false negative decisions.
The low rate of false negatives demonstrates the high efficacy of
both designs in filtering out inputs that lead to large quality degra-
dations. Moreover, the false negatives are significantly lower than
the false positives with both designs because hardware classifiers
adopt a conservative approach towards controlling quality trade-
offs; hence, prioritizing quality over benefits from approximation.
Comparison with random filtering. We compare our input-
conscious techniques to a simple random filtering technique. In
this technique, the decision to delegate a function invocation to
the accelerator is random, irrespective of the inputs. Figure 9
shows the speedup and energy reduction with both of our
techniques relative to the random filtering at 5% quality loss. The
trends are similar for other quality levels. Compared to random
filtering, the table-based design delivers 41% average speedup
and 50% average energy reduction. With the neural design, these
figures increase to 46% average speedup and 76% average energy
reduction. The speedup is as high as 2.1× (inversek2j with the

2.0⇥

4.0⇥

6.0⇥

8.0⇥

10.0⇥

12.0⇥

14.0⇥

Im
pr

ov
em

en
ti

n
E

ne
rg

y-
D

el
ay

P
ro

du
ct

Oracle Table-based Neural

75%
80%
85%
90%
95%
97%

Success
Rates

Figure 10: Trends in the Energy-Delay product for varying success rate
with 95% confidence interval and at 5% quality loss level.

 0 ... 644 8 12 16 20 24 28 32 36

80%

0%

10%

20%

30%

40%

50%

60%

70%

Av
er

ag
e

In
vo

ca
tio

n
Ra

te
Total Size of the Tables (KB)

Pareto Optimal Table-Based Design (8T×0.5KB) = 4KB

(8T × 0.5KB)
(4T × 0.5KB) (1T × 2KB)(1T × 0.5KB)

(4T × 2KB) (8T × 8KB)(1T × 8KB)
(8T × 0.125KB)(2T × 0.125KB) (2T × 0.5KB)

(4T × 8KB)(2T × 2KB)
(1T × 0.125KB)

(2T × 8KB) (8T × 2KB)
(4T × 0.125KB)

Figure 11: Pareto analysis for the table-based MITHRA at 5% quality loss.
The (aT×bKB) is a configuration with a parallel tables each of size b KB.
Our default configuration, (8T×0.5KB), is Pareto optimal.

table-based design) and the maximum energy reduction grows
to 2.9× reduction (blackscholes with the neural design). These
results collectively confirm the importance of focusing and
capturing the inputs that lead to large quality losses.
Varying success rate with 95% confidence. MITHRA aims to
provide statistical guarantees with high confidence that quality
levels will be met. The main results focus on a confidence interval
of 95% and attain 90% success rate. As the Clopper-Pearson
method in Section III describes, for different confidence intervals
the success rate is dependent on nsuccess which in turn is dependent
on the threshold selected. For 5% quality loss level, we vary
the threshold so as to obtain a sweep of success rates for 95%
confidence interval. Figure 10 presents the improvement in energy-
delay product for these success rates. As the success rate increases,
implying that there is a higher probability that quality levels will
be met, the benefits from approximation decrease. Higher success
rate provides higher statistical guarantee and therefore comes at
a higher price. The results show the MITHRA effectively enables
the programmer to control both the level of quality loss and also
the degree of statistical guarantee they desire.

2) Pareto Analysis for the Table-Based Classifier: The two
main design parameters of the table-based design are the number
of parallel tables and the size of each table. We vary these two
parameters to explore the design space of table-based MITHRA

and perform Pareto analysis to find the optimal configuration.
Figure 11 illustrates the Pareto analysis for 5% quality loss. The
trends are similar with other levels of quality loss. The design
that is denoted by (aT×bKB) represents a configuration with
a parallel tables, each of size size b kilo bytes. We explore 16

10

different designs, a set of all the combinations of (1T, 2T, 4T, 8T)
parallel tables and (0.125KB, 0.5KB, 2KB, 4KB) table sizes. The
x-axis in Figure 11 captures uncompressed size in kilo bytes.
The y-axis is the average accelerator invocation rate across all
benchmarks. We use the average invocation rate because the
invocation rate directly determines the speedup and efficiency
benefits. In Figure 11, the optimal design minimizes the size of
the predictor (left on the x-axis) and maximizes the accelerator
invocation rate (up on the y-axis). As Figure 11 illustrates, the
design with eight parallel tables, each of size 0.5KB is the Pareto
optimal design. This design space exploration shows that both
the number of tables and the size of each table have a significant
impact on the accelerator invocation rate. Due to destructive
aliasing, a smaller table (i.e., 0.125KB) is unable to discriminate
the inputs that cause large errors. As a result, smaller tables fail to
preserve the benefit of acceleration. On the other hand, larger table
sizes (i.e.,8KB) do not provide benefits beyond a certain point
because destructive aliasing cannot be completely eliminated
even with 8KB tables. Hence, we use the Pareto optimal point
with 8 tables each of size 0.5KB as our default configuration. The
configuration with larger number of tables provide higher benefits
even if the size of each table is small as the chance of destructive
aliasing decreases since each table uses a distinct hash function.

3) Data Compression for the Table-based MITHRA: Based on
the Pareto analysis, the optimal table-based design is eight tables,
each of size 0.5 KB. Therefore, the total uncompressed size of
this design is 4 KB. We observe that there are large trails of 0s in
the tables. This insight provides an opportunity to compress the
table and reduce the necessary memory state of the table-based
design. To compress the tables, we use the low-overhead and
low-latency Base-Delta compression technique [29] that has been
recently proposed for cache line compression. The Base-Delta
compression and decompression algorithms require only vector
addition, subtraction, and comparison operations. We arrange the
tables in rows of 64 B size to employ this cache line compression
mechanism. Table II shows the compression results for each
benchmark from the original uncompressed size of 4 KB. The
sparser the contents of the table, the higher the compression
ratio. These results show that blackscholes, fft, inversek2j, and jmeint
achieve 16× size reduction. However, sobel and jpeg do not benefit
from compression due to the complexity of the inputs and the high
density of the contents of the tables. Table II also shows the size of
the neural MITHRA for each application and their topology. In most
cases, after compression, the sizes of MITHRA is less than 1 KB.

VI. RELATED WORK

A growing body of work has explored leveraging
approximation for gains in performance and energy [8]–
[10], [10]–[12], [16], [17], [19], [22], [23], [34]. Our work,
however, focuses on a hardware-software mechanism to
control quality tradeoffs for approximate accelerators. Several
techniques provide software-only quality control mechanisms for
approximate computing that either operate at compile-time [13],
[14], [35]–[37] or runtime [10]–[12], [22], [38]. In contrast, we

define MITHRA, that uses hardware to control quality tradeoffs at
runtime and provides necessary compiler support for the proposed
hardware designs. Below, we discuss the most related works.
Compile-time techniques to control quality tradeoffs.
Rely [35] is an approximate programming language that requires
programmers to mark variables and operations as approximate.
Given these annotations, Rely combines symbolic and proba-
bilistic reasoning to verify whether the quality requirements are
satisfied for a function. To provide this guarantee, Rely requires
the programmer to not only mark all variables and operations
as approximate but also provide preconditions on the reliability
and range of the data. Similar to Rely, the work in [37] proposes
a relational Hoare-like logic to reason about the correctness of
approximate programs. The work in [36] uses Bayesian network
representation and symbolic execution to verify probabilistic
assertions on the quality of the approximate programs given the
input distributions. Given a quality requirement, Chisel [14] uses
Integer Linear Programming (ILP) to optimize the approximate
computational kernels at compile time. The approximation model
in these works is based on architectures that support approxima-
tion at the granularity of a single instruction [9]. The work in
Stoke [39] focuses on reducing the bit width of floating-point
operations at compile-time, trading accuracy for performance.
While these techniques focus approximation at the fine granularity
of single instruction, we focus on coarse-gain approximation with
accelerators. In a concurrent work [40], determining the quality
control knob is cast as an optimization problem; however, the work
neither uses statistical techniques nor provides hardware mech-
anisms for quality control. The above approaches do not utilize
runtime information or propose microarchitectural mechanisms
for controlling quality tradeoffs, which is a focus of our work.
Runtime quality control techniques. Green [12] provides a
code-centric programming model for annotating loops for early
termination and substitution of numerical functions with approx-
imate variants. Sage [10] and Paraprox [11] provide a set of static
approximation techniques for GPGPU kernels. Both techniques
utilize the CPU to occasionally monitor the quality of the final
outputs and adjust the approximation level. ApproxHadoop [41]
uses statistical sampling theory to control input sampling and
task dropping in approximate MapReduce tasks. Light-Weight
Checks [38] requires the programmer to write software checks for
each approximately accelerated function and the precise function
is run if the check fails. Rumba [42], concurrent to an earlier
version of this work [43], only proposes microarchitectural mech-
anisms that use decision trees and linear models for predicting the
accelerator error value. Since Rumba does not offer the necessary
compiler support, it does not map the final output quality to the
local decision on the accelerator call site. The lack of compiler
support impedes Rumba from providing concrete statistical
guarantees for the final output quality. Rumba also relies on error
value prediction (regression) that is significantly more demanding
and less reliable than the MITHRA’s binary classification solution.

Unlike these techniques that either rely only hardware or
software checks, we define a cohesively co-designed hardware-

11

software technique for controlling quality tradeoffs that leverages
runtime information and compiler support to maximize the gains
from approximate acceleration and provide statistical guarantees.

VII. CONCLUSION

Approximate accelerators deliver significant gains in
performance and efficiency by trading small losses in quality of
the results. However, the lack of a hardware-software mechanism
that control this tradeoff limit their applicability. In this paper, we
describe MITHRA, a hardware-software solution for controlling
the quality tradeoffs at runtime. MITHRA provides only statistical
quality guarantees on unseen data. The acceptability of such
guarantees is still a matter of debate and investigation. However,
it is clear that the applicability of approximate computing requires
moving beyond traditional and formal quality guarantees. In
fact, such guarantees are to some extent accepted for service
level agreements in data centers. Also, the widely used machine
learning algorithms also rely on similar statistical guarantees. This
work takes an initial step in controlling the quality tradeoffs for
approximate accelerators; aiming to open a path for their adoption.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful
comments. We thank Anandhavel Nagendrakumar for his
contributions to energy measurements. We also thank Balaji
Chandrasekaran and Hardik Sharma for their feedback on the text.
This work was supported in part by a NSF award CCF#1553192,
Semiconductor Research Corporation contract #2014-EP-2577,
and gifts from Google and Microsoft.

REFERENCES

[1] R. H. Dennard et al., “Design of ion-implanted mosfet’s with very
small physical dimensions,” IEEE Journal of Solid-State Circuits,
vol. 9, 1974.

[2] N. Hardavellas et al., “Toward dark silicon in servers,” IEEE Micro,
2011.

[3] H. Esmaeilzadeh et al., “Dark silicon and the end of multicore
scaling,” in ISCA, 2011.

[4] R. Hameed et al., “Understanding sources of inefficiency in
general-purpose chips,” in ISCA, 2010.

[5] S. Gupta et al., “Bundled execution of recurring traces for
energy-efficient general purpose processing,” in MICRO, 2011.

[6] G. Venkatesh et al., “Conservation cores: Reducing the energy of
mature computations,” in ASPLOS, 2010.

[7] V. Govindaraju et al., “Dynamically specialized datapaths for
energy efficient computing,” in HPCA, 2011.

[8] M. de Kruijf et al., “Relax: An architectural framework for software
recovery of hardware faults,” in ISCA, 2010.

[9] H. Esmaeilzadeh et al., “Architecture support for disciplined
approximate programming,” in ASPLOS, 2012.

[10] M. Samadi et al., “Sage: Self-tuning approximation for graphics
engines,” in MICRO, 2013.

[11] M. Samadi et al., “Paraprox: Pattern-based approximation for data
parallel applications,” in ASPLOS, 2014.

[12] W. Baek et al., “Green: A framework for supporting energy-
conscious programming using controlled approximation,” in PLDI,
2010.

[13] S. Sidiroglou-Douskos et al., “Managing performance vs. accuracy
trade-offs with loop perforation,” in FSE, 2011.

[14] S. Misailovic et al., “Chisel: Reliability- and accuracy-aware opti-
mization of approximate computational kernels,” in OOPSLA, 2014.

[15] J. Park et al., “AxGames: Towards crowdsourcing quality target
determination in approximate computing,” in ASPLOS, 2016.

[16] H. Esmaeilzadeh et al., “Neural acceleration for general-purpose
approximate programs,” in MICRO, 2012.

[17] R. S. Amant et al., “General-purpose code acceleration with
limited-precision analog computation,” in ISCA, 2014.

[18] A. Yazdanbakhsh et al., “Neural acceleration for gpu throughput
processors,” in MICRO, 2015.

[19] S. Venkataramani et al., “Quality programmable vector processors
for approximate computing,” in MICRO, 2013, pp. 1–12.

[20] Z. Du et al., “Leveraging the error resilience of machine-learning
applications for designing highly energy efficient accelerators,” in
ASP-DAC, January 2014.

[21] B. Belhadj et al., “Continuous real-world inputs can open up
alternative accelerator designs,” in ISCA, 2013.

[22] B. Grigorian et al., “BRAINIAC: Bringing reliable accuracy into
neurally-implemented approximate computing,” in HPCA, 2015.

[23] T. Moreau et al., “SNNAP: Approximate computing on
programmable socs via neural acceleration,” in HPCA, 2015.

[24] NetBSD Documentation, “How lazy FPU context switch works,”
2011. [URL] http://www.netbsd.org/docs/kernel/lazyfpu.html

[25] C. Clopper et al., “The use of confidence or fiducial limits illustrated
in the case of the binomial,” Biometrika, pp. 404–413, 1934.

[26] M. H. DeGroot, Probability and Statistics. Chapman & Hall, 1974.
[27] B.-H. Lin et al., “A fast signature computation algorithm for lfsr and

misr,” Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, vol. 19, no. 9, pp. 1031–1040, Sep 2000.

[28] D. E. Rumelhart et al., “Learning internal representations by error
propagation,” in Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. MIT Press, 1986, vol. 1.

[29] G. Pekhimenko et al., “Base-delta-immediate compression:
practical data compression for on-chip caches,” in PACT, 2012.

[30] A. Patel et al., “MARSSx86: A full system simulator for x86
CPUs,” in DAC, 2011.

[31] S. Li et al., “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,”
in MICRO, 2009.

[32] N. Muralimanohar et al., “Optimizing NUCA organizations and
wiring alternatives for large caches with CACTI 6.0,” in MICRO,
2007.

[33] S. Galal et al., “Energy-efficient floating-point unit design,” IEEE
TC, 2011.

[34] A. Sampson et al., “EnerJ: Approximate data types for safe and
general low-power computation,” in PLDI, 2011.

[35] M. Carbin et al., “Verifying quantitative reliability for programs
that execute on unreliable hardware,” in OOPSLA, 2013.

[36] A. Sampson et al., “Expressing and verifying probabilistic
assertions,” in PLDI, 2014.

[37] M. Carbin et al., “Proving acceptability properties of relaxed
nondeterministic approximate programs,” in PLDI, 2012.

[38] B. Grigorian et al., “Dynamically adaptive and reliable approximate
computing using light-weight error analysis,” in AHS, 2014
NASA/ESA Conference on. IEEE, 2014, pp. 248–255.

[39] E. Schkufza et al., “Stochastic optimization of floating-point
programs with tunable precision,” in PLDI, 2014.

[40] X. Sui et al., “Proactive control of approximate programs,” in
ASPLOS, 2016.

[41] I. Goiri et al., “Approxhadoop: Bringing approximations to
mapreduce frameworks,” in ASPLOS, 2015.

[42] D. S. Khudia et al., “Rumba: An online quality management
system for approximate computing,” in ISCA, Jun. 2015.

[43] D. Mahajan et al., “Prediction-based quality control for approximate
accelerators,” in Workshop on Approximate Computing Across the
System Stack (WACAS) in conjunction with ASPLOS, Mar. 2015.

12

http://www.netbsd.org/docs/kernel/lazyfpu.html

